@Diligence

AUDITS

FUZZING SCRIBBLE ABOUT

Push Protocol Snap for MetaMask

1 Executive Summary

2 Scope
2.1 Verification Phase

2.2 Objectives
3 Document Change Log

4 Snap Outline
4. Capabilities

4.2 Dependencies

5 Findings

5.1 Superfluous Permission

endowment :ethereum-provider

v Fixed

5.2 A Trusted Website Can Add

Any Address to the Snaps Address
Storage; No Control Over Added

Addresses; Confirmation Is a
Notification Vv Fixed

5.3 Lax Input Validation, Control
Char, URI, and Markdown

Injection v Fixed

5.4 persistedData Race Where
snap_manageState.get Returns
null v Fixed

5.5 User Flow - Request to Sign
Message Does Not Provide
Security Guarantee Medium

v Fixed

5.6 TypeScript Errors 'Medium
v Fixed

5.7 Avoid Hardcoding the Local

Snap ID (VI

5.8 package.json - Invalid License

m v Fixed

5.9 fetchAddress -Inaccurate
Function Name (I3

510 currentepoch - Unnecesary
Conversion From/to String (I3

v Fixed

5.11 Dead Code popup (13
v Fixed

5.12 Unused Import ethers ,

@metamask/snaps-ui (I3
Y Fixed

5.13 Non-Existent Base Config
(Eslint, Tsconfig) (I3

514 Performance - await in for

Loop | ¢ Fixed

5.15 API Design - Consider Using

Consistent RPC Method Names
v Fixed

Appendix 1 - Files in Scope

Appendix 2 - Disclosure

Date July 2023

Auditors Martin Ortner

1 Executive Summary

This report presents the results of our engagement with PushProtocol to review Snap v1, a MetaMask Snap for delivering channel
notifications and chat notifications within metamask wallet.

The review was conducted from July 5, 2023 to July 6, 2023. A total of 2 person-days were spent.

2 Scope

The review focused on the commit hash c1636586deele43cd447f9c4ac03b0d776224f9c. The list of files in scope can be found
in the Appendix.

The Technical Specification can be found here.

2.1 Verification Phase

Mitigations were reviewed from July 11, 2023 to July 13, 2023 focussing on the commit hash
1a6a32ef760088ca59f73e555f41b5b5d871f761.

Update 1:

The client provided commit hash 1a6a32ef760088ca59f73e555f41b5b5d871f761 for review addressing outstanding issues on July
14, 2023.

Update 2:

The client provided commit hash b40e141243c77bfd7ec109408b326607b19314c8 for review addressing outstanding issues on
July 17, 2023.

2.2 Objectives
Together with the Push Protocol team, we identified the following priorities for our review:

1. Correctness of the implementation, consistent with the intended functionality and without unintended edge cases.

2. ldentify vulnerabilities particular to the MetaMask Snaps SDK integration in coherence with the MetaMask Snap Threat Model
describing a Snap as an extension of the MetaMask Wallet Trust Module.

3 Document Change Log

Version Date Description
1.0 2023-07-06 Initial report
1.1 2023-07-12 Mitigations review
1.2 2023-07-14 Mitigations review, update 1
1.3 2023-07-17 Mitigations review, update 2

4 Snap Outline

The snap stores addresses to be monitore and config settings in snap_manageState .

The snap may interact with the following 3rd party service providers via the fetch() API:

O https://backend-prod.epns.io/apis/v1/users/eip155:5:${address}/feeds

Connected dapps can communicate with the snap via MetaMask snap RPC.

The Snap registers a cronjob that fires every minute, fetching new notifications.

Note: Notification messages for all addresses are public. Anyone can subscribe to notifications sent to any address. The back-end
API does not authenticate the requested address (signature). The wallet may require proof of ownership but this is only
implemented in the front-end (dapp) and can easily be bypassed.

41 Capabilities

https://github.com/ethereum-push-notification-service/push-protocol-snaps/tree/c1636586dee1e43cd447f9c4ac03b0d776224f9c
https://pushprotocol.notion.site/Technical-Specification-of-push-v1-Snap-664ccc0f2af34e64b4122b5416b56264
https://github.com/ethereum-push-notification-service/push-protocol-snaps/tree/1a6a32ef760088ca59f73e555f41b5b5d871f761
https://github.com/ethereum-push-notification-service/push-protocol-snaps/tree/1a6a32ef760088ca59f73e555f41b5b5d871f761
https://github.com/ethereum-push-notification-service/push-protocol-snaps/tree/b40e141243c77bfd7ec109408b326607b19314c8
https://docs.metamask.io/snaps
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

[} [] MetaMask Notification

75 Push VI

.ge v0.1.0
http://localhost:8080

Install snap

localhost wants to install http://localhost:8080, which
is requesting the following permissions. Make sure you
trust the authors before you proceed.

t. Allowwebsites to communicate directly
with this snap.

Requested now

) Schedule and execute periodic actions.

Requested now

@ Access the internet.

Requested now

'y Access the Ethereum provider.
Requested now
O] Display dialog windows in MetaMask.

Requested now

Py Show notifications.

Requested now

Store and manage its data on your device.

Requested now

< Cancel > Approve & install

Permissions

Details

249 (lines of code)
Bundle ==
Error: Missing file "images/icon.svg".
- package-lock missing
- package.json: invalid license '(MIT-0 OR Apache-2.0)'
----%<---- raw permissions
: https://docs.metamask.io/snaps/reference/rpc-api/#wallet_requestsnaps

[#

|

snap_dialog: {},

"endowment:rpc': { dapps: true, snaps: false },
snap_notify: {},

"endowment:cronjob': { jobs: [[Object]] },
"endowment :network-access': {},
snap_manageState: {},

"endowment :ethereum-provider': {}

}
---->%---- raw permissions
#@ [snap_dialog]
-~ - snap_dialog - Displays a dialog in the MetaMask UI. There are three types of dialogs with different parameters and return types.

! - this method renders Markdown! check for ctrlchar/markdown/injection
src/index.ts
src/utils/fetchAddress.ts
#o [endowment:rpc]
I - endowment:rpc.dapps - snap can communicate with websites/dapps; check origin for internal api calls!
src/index.ts
#@ [snap_notify]
- snap_notify - Displays a notification in MetaMask or natively in the browser. Snaps can trigger a short notification text for actionable or t:
! - this method renders Markdown! check for ctrlchar/markdown/injection
src/index.ts
#@ [endowment:cronjob]
I - endowment:cronjob.fireCronjob - fires every minute! (% * * * %)
src/index.ts
#@ [endowment:network-access]
- endowment:network-access - snap can access internet
! - this method may leak information to external api
src/index.ts
src/utils/fetchnotifs.ts
#@ [snap_manageState]
= - snap_manageState - snap can store up to 100mb (isolated)
src/index.ts
src/utils/toggleHelper.ts
src/utils/fetchAddress.ts
#o [endowment:ethereum-provider]
& - endowment:ethereum-provider - snap can access ethereum API
! - check if the **snap code** (not site) actually accesses the global object 'window.ethereum’
A - superfluous permission: no reference to 'window.ethereum.*"'!

4.2 Dependencies

4 - Package Depenencies:
- ethers:5.7.2

5 Findings
Each issue has an assigned severity:

e [T issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

e Medium issues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

5.1 Superfluous Permission endowment :ethereum-provider mm (Ve

Resolution

https://consensys.net/diligence/audits/private/6z76rbfq82ifg4/img/permissions.png

fixed in ethereum-push-notification-service/push-protocol-snaps@1a6a32ef760088ca59f73e555f41b5b5d871f761 by
removing the ethereum provider permission from the manifest.

Description
The snap requests permission endowment:ethereum-provider DUt window.ethereum iS Never accessed from within the snap’s context.

snap/snap.manifest.json:L39

"endowment :ethereum-provider": {}

Recommendation

Remove superfluous permissions.

5.2 A Trusted Website Can Add Any Address to the Snaps Address Storage; No Control Over Added
Addresses; Confirmation Is a Notification o (Ve

Resolution

partially addressed in ethereum-push-notification-service/push-protocol-
snaps@1a6a32ef760088ca59f73e555f41b5b5d871f761 by only allowing trusted origins to interact with the snap.

Update: user confirmation for address management (add/remove current account) added with ethereum-push-notification-
service/push-protocol-snaps@7ee018947303014e8c14e€9413a5edd9fd29f9829

Description

Trusted websites can add addresses to the list of addresses the user wants to receive notifications for. However, the user has no
control over the addresses, and even though the code suggests that the snap user must confirm new address addition, this
confirmation is merely a notification that the address has been added.

The lack of address management may lead to a self-DoS when too many addresses are added to the extension.

await window.ethereum?.request({
method: "wallet_invokeSnap",
params: {
snapId: "local:http://localhost:8086",
request: { method: 'hello', params: { address: "\nhi\nho" } },

1)

push-snap-site/components/buttons/ConfirmButton.tsx:L6-L35

export default function ConfirmButton() {
const { address, isConnecting, isDisconnected } = useAccount();
const defaultSnapOrigin = “local:http:

const sendHello = async (address: string) => {
await window.ethereum?.request({
method: "wallet_invokeSnap",
params: {
snapId: defaultSnapOrigin,
request: { method: 'hello', params: { address: address } },
e
1)
i

const { data, isError, islLoading, isSuccess, signMessage } = useSignMessage({
message:
“Confirm your Address ${address}, \n this will be added to MetaMask for sending notifications’,

1),

function sleep(ms: number) {
return new Promise((resolve) => setTimeout(resolve, ms));

}

const confirmAddition=async()=>{
signMessage();
if(isSuccess){
await sleep(5000);
await sendHello(String(address));

}
}

The same is true for configuration settings. Any connected dap may set togglepopup . This may be problematic in multi-dapp

scenarios where multiple dapps request to set togglepopup .

Recommendation

Note that dapps are not necessarily completely trusted. They can be modified, or malicious behavior may be added later by the
dapp deployer (unless used locally or via IPFS). Therefore, the snap should always notify the wallet owner of important state
changes and allow them to reject them or, in this case, manage addresses that've been added previously.

https://github.com/ethereum-push-notification-service/push-protocol-snaps/tree/1a6a32ef760088ca59f73e555f41b5b5d871f761
https://github.com/ethereum-push-notification-service/push-protocol-snaps/tree/1a6a32ef760088ca59f73e555f41b5b5d871f761
https://github.com/ethereum-push-notification-service/push-protocol-snaps/commit/7ee018947303014e8c14e9413a5edd9fd29f9829

Consider checking the origin in onrec if this dapp is only meant to be called from a specific dapp address. Otherwise, any
connected dapp may change configuration settings.

5.3 Lax Input Validation, Control Char, URI, and Markdown Injection cmom (vese

Resolution

addressed in ethereum-push-notification-service/push-protocol-snaps@1a6a32ef760088ca59f73e555f41b5b5d871f761
validating the address with ethers.utils.isAddress .

Update 1:

¢ Markdown rendering of newlines fixed with: ethereum-push-notification-service/push-protocol-
snaps@7ee018947303014e8c14e9413a5edd9fd29f9829

e Major: Markdown Injection in Confirmation Dialogue re-introduced with ethereum-push-notification-service/push-
protocol-snaps@7ee018947303014e8c14e9413a5edd9fd29f9829

Update 2:

Markdown Injection in Confirmation Dialogue fixed with ethereum-push-notification-service/push-protocol-
shaps@b40e141243c77bfd7ec109408b326607b19314c8

Description

There is no input validation on the address to be added. The input may be an ethereum address but can be anything, potentially
breaking security assumptions in the code and leading to unwanted side effects.

® request.params May be nul1 , and

® request.params.address May not be an ethereum address.

snap/src/index.ts:L18

await addAddress(request.params.address || "6x8");
Example
®HI

< boom

await window.ethereum?.request({
method: "wallet_invokeSnap",

params: {

snapId: "local:http://localhost:8080",

request: { method: 'hello', params: { address: "Hi §-§\n\n @ **boomxx" } },
)

e URIinjection if address contains 2#/

snap/src/utils/fetchnotifs.ts:L3-L13

export const getNotifications=async(address:string)=>{
const url = “https://backend-prod.epns.io/apis/v1/users/eip155:5:S8{address}/feeds";
const response = await fetch(url, {
method: 'get',
headers: {
'Content-Type': 'application/json',
e
I
const data = await response.json();
return data;

b

e |Injection in notifications

snap/src/utils/popupHelper.ts:L3-L12

export const popupHelper = (notifs: String[]) => {
let msg = [];
if (notifs.length > 0) {
notifs.forEach((notif) => {
let str = "\ndk" + notif + "\n":
msg.push(str);
)
}

return msg;

|2

e Markdown injection

https://github.com/ethereum-push-notification-service/push-protocol-snaps/tree/1a6a32ef760088ca59f73e555f41b5b5d871f761
https://github.com/ethereum-push-notification-service/push-protocol-snaps/commit/7ee018947303014e8c14e9413a5edd9fd29f9829
https://github.com/ethereum-push-notification-service/push-protocol-snaps/commit/7ee018947303014e8c14e9413a5edd9fd29f9829
https://github.com/ethereum-push-notification-service/push-protocol-snaps/commit/b40e141243c77bfd7ec109408b326607b19314c8

snap/src/utils/fetchAddress.ts:L45-L52

const data = persistedData.addresses;

const popup = persistedData.popuptoggle;

let msg="";

for(let i = @; i < data!.length; i++){
msg = msg + '®' + data![i] + '\n';

}

return snap.request({
method: 'snap_dialog',

Also, note that the currently rendered markdown that lists addresses appears wrong, as markdown newlines require \n\n instead
of \n.

Recommendation

Strictly validate inputs from external origins. Ensure that the provided address is a valid ethereum address. Optionally check the
addresses checksum to detect typos. Ensure that inputs may not lead to renderable markdown. Fix the rendered list of addresses
to properly display as a newlined list. Ensure untrusted inputs cannot inject context-sensitive information into fetch urls.

5.4 persistedData Race Where snap_manageState.get Returns null gm (e

Resolution

addressed with ethereum-push-notification-service/push-protocol-snaps@7ee018947303014e8c14e9413a5edd9fd29f9829
by introducing a wrapper function that ensures that snapstate returns sane defaults. This function is not used everywhere,
but in places where it is not, custom checks are employed.

Description
Metamask Error:

Oops! Something went wrong.
Snap Error: 'Cannot read properties of null (reading 'addresses')'. Error Code: '-32603'

snap.request(, {method: 'snap_manageState', params: {operation: 'get'}}) May return null . Snap state is only initialized on rpc request

method hello Via addAddress() .
This is the only method that checks if the retrieved state is nul1 :

snap/src/utils/fetchAddress.ts:L5-L20

export const addAddress async (address:string) => {

const persistedData await snap.request({
method: 'snap_manageState',
params: { operation: 'get' },

1)

if(persistedData == null){

const data = {
addresses: [address],
popuptoggle: 0,

i

await snap.request({
method: 'snap_manageState',
params: { operation: 'update', newState:data },

1)

snap/src/index.ts:L12-L21

export const onRpcRequest: OnRpcRequestHandler = async ({
origin,
request,
}) => A
switch (request.method) {
case "hello": {
await addAddress(request.params.address || "6x8");
await confirmAddress();
break;

If the state was never initialized or there was a race where rpc-hello() was not called first, then the snap may run into a null deref

exception (here rpc-togglepopup):

snap/src/utils/toggleHelper.ts:L2-L12

let persistedData = await snap.request({
method: 'snap_manageState',
params: { operation: 'get' },

1)
let popuptoggle = notifcount;

const data = {
addresses: persistedData.addresses,
popuptoggle: popuptoggle,

i

https://github.com/ethereum-push-notification-service/push-protocol-snaps/commit/7ee018947303014e8c14e9413a5edd9fd29f9829

Recommendation

Wrap snap_managestate With a function that always falls back to safe defaults if the snap state was never set. This also obsoleted the
future need to check if persistedpata is null as the new method ensures safe non-null defaults.

This should also silence some of the type errors reported by tslint that warn that attributes of persistentdata are read while it might
be null (see issue 5.6).

5.5 User Flow - Request to Sign Message Does Not Provide Security Guarantee wedium [V

Resolution

obsolete, removed with ethereum-push-notification-service/push-protocol-
snaps@7ee018947303014e8c14e9413a5edd9fd29f9829.

Description

A connected dapp can add any address to the snap via the RPC method nelio . There is no added security by requesting the user
to sign with their address as the backend API gives access to any address notification (they are not private) and the dapps
request is a front-end-only solution. A user may add any other address by creating their dapp which allows custom addresses.

In light of this, the front-end (dapp) security check requiring the user to prove that they are in possession of the private key
appears not to add any security guarantees to the snap. Instead, the snap may want to enumerate wallet account addresses
internally instead and remove the heilo API altogether, or, allow any address to be added without requiring a proof of ownership
of an address.

Examples

push-snap-site/components/buttons/ConfirmButton.tsx:L20-L23

const { data, isError, islLoading, isSuccess, signMessage } = useSignMessage({
message:
“Confirm your Address ${address}, \n this will be added to MetaMask for sending notifications’,

1)
Recommendation

Remove the signature check, and add linked accounts from within the snaps context. Be transparent that notification texts are
not private, and anyone can subscribe to the back-end API. If notifications are private to the recipient, we suggest encrypting
them for the target account and adding logic in the snap to allow the recipient to decrypt them within the context of the snap.

5.6 TypeScript Errors ivedium [VERe

Resolution

partially addressed in ethereum-push-notification-service/push-protocol-
snaps@1a6a32ef760088ca59f73e555f41b5b5d871f761:

e toggleHelper NOt addressed.
* popupHelper addressed as per recommendation.
® fetchAllAddrNotifs fixed by forcing fetchaddress() to return empty array instead.

® persistedpata partially addressed. might still null-deref at persistedbata.addresses in index.ts

Update: toggleHelper and persisteddata addressed with the snap data check wrapper function in ethereum-push-notification-
service/push-protocol-snaps@7ee018947303014e8c14e€9413a5edd9fd29f9829

Description
® toggleHelper

persisteddata Should be checked for nu11 and default to a sane initial config. notifcount:Number should be notifcount :number .

Type '{ addresses: Json; popuptoggle: Number; }' is not assignable to type 'Record<string, Json>'.
Property 'popuptoggle’ is incompatible with index signature.
Type 'Number' is not assignable to type 'Json'.
Type 'Number' is not assignable to type '{ [prop: string]: Json; }'.
Index signature for type 'string' is missing in type 'Number'.ts(2322)

snap/src/utils/toggleHelper.ts:L7-L16

let popuptoggle = notifcount;

const data = {
addresses: persistedData.addresses,
popuptoggle: popuptoggle,
e
await snap.request({
method: 'snap_manageState',
params: { operation: 'update', newState:data },

1)

https://github.com/ethereum-push-notification-service/push-protocol-snaps/commit/7ee018947303014e8c14e9413a5edd9fd29f9829
https://github.com/ethereum-push-notification-service/push-protocol-snaps/tree/1a6a32ef760088ca59f73e555f41b5b5d871f761
https://github.com/ethereum-push-notification-service/push-protocol-snaps/commit/7ee018947303014e8c14e9413a5edd9fd29f9829

® popupHelper

let msg = [] should be 1et msg = [] as String[];
Variable 'msg' implicitly has an 'any[]' type.ts(7005)

® addresses can be null

snap/src/utils/fetchnotifs.ts:L34-L37

export const fetchAllAddrNotifs = async () => {
const addresses = await fetchAddress();
let notifs:String[] = [];
for(let i = @; i < addresses.length; i++){

® persistedData Can be nu11l

snap/src/index.ts:L63-L68

let persistedData = await snap.request({
method: "snap_manageState",
params: { operation: "get" },

1),

let popuptoggle = Number(persistedData.popuptoggle) + msgs.length;

Recommendation

Fix the typescript configuration (see issue 5.13). Fix all reported ts-lint errors. Avoid using any types and use safe types instead.
5.7 Avoid Hardcoding the Local Snap ID gz

Description

The local snap-id is hardcoded in various places. Local snap IDs should not be used in production. Hence, we recommend
defining and importing the snap id from a single source file within the project, setting it to 1ocal:http://localhost:8ese and
npm:push-vi depending on whether the build is set to be production or development (e.g., using an environment variable).

push-snap-site/components/buttons/ConfirmButton.tsx:L6-L8

export default function ConfirmButton() {
const { address, isConnecting, isDisconnected } = useAccount();
const defaultSnapOrigin = “local:http:

push-snap-site/components/buttons/ReconnectButton.tsx:L4-L6

export default function ReconnectButton() {

const defaultSnapOrigin = “local:http:

push-snap-site/components/buttons/SendMessageButton.tsx:L1-L3

export default function ReconnectButton() {

const defaultSnapOrigin = “local:http:

5.8 package.json - Invalid License grm (v

Resolution

fixed in ethereum-push-notification-service/push-protocol-snaps@1a6a32ef760088ca59f73e555f41b5b5d871f761 by
changing the license to GPLv2.

Description
The license field in package.json is invalid.

snap/package.json:L9

"license": "(MIT-0 OR Apache-2.0)",

Recommendation

Update the license field.

5.9 fetchAddress -Inaccurate Function Name ™

Description

Function fetchaddress returns an array of addresses and should, therefore, be named fetchaddresses

https://github.com/ethereum-push-notification-service/push-protocol-snaps/tree/1a6a32ef760088ca59f73e555f41b5b5d871f761

snap/src/utils/fetchAddress.ts:L66-L73

export const fetchAddress = async () => {
const persistedData = await snap.request({
method: 'snap_manageState',
params: { operation: 'get' },
I
const addresses = persistedData!.addresses;
return addresses;

s

510 currentepoch - Unnecesary Conversion From/to String cmm (Ve

Resolution

fixed in ethereum-push-notification-service/push-protocol-snaps@1a6a32ef760088ca59f73e555f41b5b5d871f761 by not
converting currentepoch to string.

Description

It is unclear why currentepoch is declared as string While calculations require it to be numerical.

Examples

snap/src/utils/fetchnotifs.ts:L15-L31

export const filterNotifications=async(address:string)=>{
let fetchedNotifications = await getNotifications(address);
fetchedNotifications = fetchedNotifications?.feeds;
let notiffeeds:String[] = [];
const currentepoch:string = Math.floor(Date.now() / 1000).toString();
if(fetchedNotifications.length > 0){
for(let i = @8; i < fetchedNotifications.length; i++){
let feedepoch = fetchedNotifications[i].payload.data.epoch;
feedepoch = Number(feedepoch).toFixed(0);
if(feedepoch > parseInt(currentepoch)-60) {
let msg = fetchedNotifications[i].payload.data.app+' : '+fetchedNotifications[i].payload.data.amsg;
notiffeeds.push(msg);
}
}
}

notiffeeds = notiffeeds.reverse();
return notiffeeds;

Recommendation

currentepoch should be numerical.

5.11 Dead Code popup mm ek

Resolution

fixed in ethereum-push-notification-service/push-protocol-snaps@1a6a32ef760088ca59f73e555f41b5b5d871f761 by
removing the used code.

Description

const popup IS retrieved from the snap state but never used within the context of confirmaddress() . This might be an indicator of an
incomplete implementation of the toggleropup setting or dead code.

snap/src/utils/fetchAddress.ts:L40-L47

export const confirmAddress = async () => {
const persistedData = await snap.request({
method: 'snap_manageState',
params: { operation: 'get' },
1)
const data = persistedData.addresses;
const popup = persistedData.popuptoggle;
let msg="";

Recommendation

Double check if this setting is meant to be read (unlikely) or else clean up and remove unused code.

512 Unused Import ethers, @metamask/snaps-ui gmm Wk

Resolution

fixed in ethereum-push-notification-service/push-protocol-snaps@1a6a32ef760088ca59f73e555f41b5b5d871f761 by using
ethers to check if the provided address is well-formed and removing the emetamask/snaps-ui import from popupHelper .

https://github.com/ethereum-push-notification-service/push-protocol-snaps/tree/1a6a32ef760088ca59f73e555f41b5b5d871f761
https://github.com/ethereum-push-notification-service/push-protocol-snaps/tree/1a6a32ef760088ca59f73e555f41b5b5d871f761
https://github.com/ethereum-push-notification-service/push-protocol-snaps/tree/1a6a32ef760088ca59f73e555f41b5b5d871f761

Description
® ethers
ethers is listed as a dependency and imported by fetchaddress.ts but is never used.

snap/src/utils/fetchAddress.ts:L3

const {ethers} = require('ethers');

® @metamask/snaps-ui
emetamask/snaps-ui IS imported in popuptelper but the imported components are never used.

snap/src/utils/popupHelper.ts:L1

import { heading, panel, text } from "@metamask/snaps-ui";

Recommendation

Remove the unused import/dependency.

5.13 Non-Existent Base Config (Eslint, Tsconfig) czm
Description
.eslintrc.js points to a base configuration outside of this repository.

snap/.eslintrc.js:L2

extends: ['../../.eslintrc.js'],

® _eslintrc.js

= npm run lint:eslint

> push-v1@0.1.0 lint:eslint
> eslint . --cache --ext js,ts

Oops! Something went wrong! :(
ESLint: 8.40.0
ESLint couldn't find the config "../../.eslintrc.js" to extend from. Please check that the name of the config is correct.

The config "../../.eslintrc.js" was referenced from the config file in "/Users/tintin/workspace/js/push-protocol-snaps/snap/.eslintrc.js".

® tsconfig.json

snap/tsconfig.json:L2

"extends": "../../tsconfig.json",

Recommendation

Provide the eslint base configuration with the repository to allow for reproducible lint runs. Run the linter as part of github
commit checks.

5.14 Performance - await infor Loop (e

Resolution

fixed in ethereum-push-notification-service/push-protocol-snaps@1a6a32ef760088ca59f73e555f41b5b5d871f761 by using
Promise.all() instead.

Description

Performing an await as part of each operation is an indication that the program is not taking full advantage of the parallelization
benefits of async/await :

snap/src/utils/fetchnotifs.ts:L38

let temp = await filterNotifications(addresses[i]);

Recommendation

Using promise.al1() fully utilizes parallelism and improves performance

5.15 API Design - Consider Using Consistent RPC Method Names (s

Resolution

https://github.com/ethereum-push-notification-service/push-protocol-snaps/tree/1a6a32ef760088ca59f73e555f41b5b5d871f761

fixed in ethereum-push-notification-service/push-protocol-snaps@1a6a32ef760088ca59f73e555f41b5b5d871f761 by
changing the rpc method names as per recommendation.

Description

Consider using descriptive RPC method names with a distinct prefix, €.g. pushproto_initialize , pushproto_addaddress ,

pushprotoc_togglepopup :

snap/src/index.ts:L17
case "hello": {
snap/src/index.ts:L22
case "init": {
snap/src/index.ts:L36
case "togglepopup": {
Note that init can be called multiple times and is not initializing anything.
Appendix 1 - Files in Scope

Total Code Comment ToDo Name Sha1

1 129 18 src/index.ts b2488a3bf3f5fb3c4d9985b2b600

cf4126c8b05e

5 73 66 src/utils/fetchA c7d084edac54ab91449bbcf189d9
ddress.ts aacec75f45fe

3 42 39 1 src/utils/fetchn 0c65aed01976¢c4¢c87c09525bd9f2
otifs.ts 06dbd28967e5

A 19 " src/utils/popup 007b0daec3ec899ee950db8ce59
Helper.ts 3aad38551c90c

5 17 15 src/utils/toggle 64cd0f3848c55d39e03e48c7eaef
Helper.ts 399f8a83795¢c

)y 273 249 1 0

Appendix 2 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of code and only the code we note as being within the scope of our review
within this report. Any Solidity code itself presents unique and unguantifiable risks as the Solidity language itself remains under
development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas
beyond specified code that could present security risks. Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. In some instances, we may perform penetration testing or infrastructure
assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) - on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are not responsible for the content
or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the use
of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or mean
that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the

https://github.com/ethereum-push-notification-service/push-protocol-snaps/tree/1a6a32ef760088ca59f73e555f41b5b5d871f761

Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

rowereo oy T CONSENSYS

https://consensys.net/

