
Tidal

Date May 2023

Auditors Heiko Fisch, David Oz

1 Executive Summary
This report presents the results of our engagement with Tidal to review a subset of the Tidal Contracts V2.

The review was conducted over one week, from May 8–15, 2023, by David Oz and Heiko Fisch. A total of 10 person-days were
spent.

An additional week of review was conducted from June 5th 2023 by David Oz to review the mitigations proposed by the Tidal
team.

We identi�ied 3 critical and 2 major issues as well as several issues of medium or minor severity. Our recommendation is to
review all �indings, implement �ixes and improvements, and then have the codebase undergo internal reviews and �inally
another external audit. We also propose improving the test coverage, rigorous testing campaigns on testnet, and a soft launch
before going to full production mode with large user deposits.

The Tidal team describes their system as “cross-chain insurance marketplace with enhanced capital e�iciency.” Very brie�ly,
buyers can buy insurance for a �ixed policy and period, while sellers deposit the necessary collateral to provide coverage.
Collateral can be withdrawn with a time delay. There is a pool manager with some privileges, but a more important role is played
by the committee: Proposals for claims or to change important system parameters can be made by the pool manager or a
committee member, and within a �ixed time interval, committee members can vote on the proposal. If a certain threshold of
a�irmative votes is reached, the proposal has passed and can be processed. Any threshold-sized subset of the committee has
complete control over the funds held by the contract, and it is important to communicate this trust assumption to the
community. Moreover, we recommend setting a su�iciently high threshold and following standard multisig best practices to
protect against common risks like loss of private keys, malicious insiders, etc.

Another centralization risk lies in the upgradeability of the contracts. However, the proxy contract as well as the upgrade
mechanism and privileges have not been in scope for this engagement.

2 Scope
Our review focused on the commit hash 741e920cb0ce9acb1d1aa4f1e2b6529ae274a4dd . The list of �iles in scope can be found in the
Appendix.

2.1 Objectives

Together with the Tidal team, we identi�ied the following priorities for our review:

1. Correctness of the implementation, consistent with the intended functionality and without unintended edge cases.

2. Identify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
Smart Contract Weakness Classi�ication Registry.

3 Findings
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

Major issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be �ixed.

3.1 addPremium – A Back Runner May Cause an Insurance Holder to Lose Their Refunds by Calling

addPremium Right After the Original Call Critical ✓ Fixed

Resolution

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by returning with no-op in case incomeMap[policyIndex_][week] = 0 , and
by doing this eliminate the risk of loss of refunds.

Description

1 Executive Summary

2 Scope

2.1 Objectives

3 Findings

3.1 addPremium – A Back Runner
May Cause an Insurance Holder to
Lose Their Refunds by Calling
addPremium Right After the

Original Call Critical ✓ Fixed

3.2 refund – Attacker Can Lock
Insurance Holder’s Refunds by
Calling refund Before a Refund

Was Allocated Critical ✓ Fixed

3.3 addTidal , _updateUserTidal ,

withdrawTidal – Wrong
Arithmetic Calculations Critical
✓ Fixed

3.4 claim – Incomplete and
Lenient Implementation Major
✓ Fixed

3.5 buy – Insurance Buyers
Trying to Increase Their Coverage
Amount Will Lose Their Previous
Coverage Major ✓ Fixed

3.6 Several Issues Related to
Upgradeability of Contracts

Medium ✓ Fixed

3.7 initialize – Committee
Members Array Can Contain
Duplicates Medium ✓ Fixed

3.8 addPolicy , setPolicy –
Missing Input Validation Medium
✓ Fixed

3.9 Pool.buy – Users May End Up
Paying More Than Intended Due
to Changes in
policy.weeklyPremium Medium

✓ Fixed

3.10 Missing Validation Checks in
execute Medium ✓ Fixed

3.11 Reentrancy Concerns Minor
✓ Fixed

3.12 Hard-Coded Minimum
Deposit Amount Minor ✓ Fixed

3.13 Unnecessary Use of
SafeMath Library Minor

✓ Fixed

3.14 Outdated Solidity Version
Minor ✓ Fixed

3.15 Code Used for Testing
Purposes Should Be Removed
Before Deployment Minor
✓ Fixed

3.16 Missing Events Minor
✓ Fixed

3.17 CommitteeRequest ,

WithdrawRequest - Should Use an

enum Type ✓ Fixed

3.18 No NatSpec Annotations

3.19 vote - Voting “No” Has No

Effect ✓ Fixed

3.20 Unused Import ✓ Fixed

3.21 Unnecessary and Outdated
Pragma Directive ✓ Fixed

AUDIT S FUZZIN G SC R IBBLE ABO UT

https://tidal.finance/
https://github.com/TidalFinance/tidal-contracts-v2/tree/741e920cb0ce9acb1d1aa4f1e2b6529ae274a4dd
https://docs.tidal.finance/
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

addPremium is a public function that can be called by anyone and that distributes the weekly premium payments to the pool
manager and the rest of the pool share holders. If the collateral deposited is not enough to cover the total coverage offered to
insurance holders for a given week, refunds are allocated pro rata for all insurance holders of that particular week and policy.
However, in the current implementation, attackers can call addPremium right after the original call to addPremium but before the call
to refund ; this will cause the insurance holders to lose their refunds, which will be effectively locked forever in the contract
(unless the contract is upgraded).

Examples

contracts/Pool.sol:L313-L314

refundMap[policyIndex_][week] = incomeMap[policyIndex_][week].mul(
 allCovered.sub(maximumToCover)).div(allCovered);

Recommendation

addPremium should contain a validation check in the beginning of the function that reverts for the case of
incomeMap[policyIndex_][week] = 0 .

3.2 refund – Attacker Can Lock Insurance Holder’s Refunds by Calling refund Before a Refund
Was Allocated Critical ✓ Fixed

Resolution

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing the auditor’s recommendation.

Description

addPremium is used to determine the refund amount that an insurance holder is eligible to claim. The amount is stored in the
refundMap mapping and can then later be claimed by anyone on behalf of an insurance holder by calling refund . The refund

function can’t be called more than once for a given combination of policyIndex_ , week_ , and who_ , as it would revert with an
“Already refunded” error. This gives an attacker the opportunity to call refund on behalf of any insurance holder with value 0
inside the refundMap , causing any future refund allocated for that holder in a given week and for a given policy to be locked
forever in the contract (unless the contract is upgraded).

Examples

contracts/Pool.sol:L341-L367

function refund(
 uint256 policyIndex_,
 uint256 week_,
 address who_
) external noReenter {
 Coverage storage coverage = coverageMap[policyIndex_][week_][who_];

 require(!coverage.refunded, "Already refunded");

 uint256 allCovered = coveredMap[policyIndex_][week_];
 uint256 amountToRefund = refundMap[policyIndex_][week_].mul(
 coverage.amount).div(allCovered);
 coverage.amount = coverage.amount.mul(
 coverage.premium.sub(amountToRefund)).div(coverage.premium);
 coverage.refunded = true;

 IERC20(baseToken).safeTransfer(who_, amountToRefund);

 if (eventAggregator != address(0)) {
 IEventAggregator(eventAggregator).refund(
 policyIndex_,
 week_,
 who_,
 amountToRefund
);
 }
}

Recommendation

There should be a validation check at the beginning of the function that reverts if refundMap[policyIndex_][week_] == 0 .

3.3 addTidal , _updateUserTidal , withdrawTidal – Wrong Arithmetic Calculations Critical ✓ Fixed

Resolution

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing the auditor’s recommendation.

Description

To further incentivize sellers, anyone – although it will usually be the pool manager – can send an arbitrary amount of the Tidal
token to a pool, which is then supposed to be distributed proportionally among the share owners. There are several �laws in the
calculations that implement this mechanism:

3.22 vote Could Call execute

When committeeThreshold Is

Reached ✓ Fixed

Appendix 1 - Files in Scope

Appendix 2 - Disclosure

https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d
https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d

A. addTidal :

contracts/Pool.sol:L543-L544

poolInfo.accTidalPerShare = poolInfo.accTidalPerShare.add(
 amount_.mul(SHARE_UNITS)).div(poolInfo.totalShare);

This should be:

poolInfo.accTidalPerShare = poolInfo.accTidalPerShare.add(
 amount_.mul(SHARE_UNITS).div(poolInfo.totalShare));

Note the different parenthesization. Without SafeMath :

poolInfo.accTidalPerShare += amount_ * SHARE_UNITS / poolInfo.totalShare;

B. _updateUserTidal :

contracts/Pool.sol:L549-L550

uint256 accAmount = poolInfo.accTidalPerShare.add(
 userInfo.share).div(SHARE_UNITS);

This should be:

uint256 accAmount = poolInfo.accTidalPerShare.mul(
 userInfo.share).div(SHARE_UNITS);

Note that add has been replaced with mul . Without SafeMath :

uint256 accAmount = poolInfo.accTidalPerShare * userInfo.share / SHARE_UNITS;

C. withdrawTidal :

contracts/Pool.sol:L568

uint256 accAmount = poolInfo.accTidalPerShare.add(userInfo.share);

As in B, this should be:

uint256 accAmount = poolInfo.accTidalPerShare.mul(
 userInfo.share).div(SHARE_UNITS);

Note that add has been replaced with mul and that a division by SHARE_UNITS has been appended. Without SafeMath :

uint256 accAmount = poolInfo.accTidalPerShare * userInfo.share / SHARE_UNITS;

As an additional minor point, the division in addTidal will revert with a panic (0x12) if the number of shares in the pool is zero.
This case could be handled more gracefully.

Recommendation

Implement the �ixes described above. The versions without SafeMath are easier to read and should be preferred; see issue 3.13.

3.4 claim – Incomplete and Lenient Implementation Major ✓ Fixed

Resolution

Acknowledged but not �ixed in this version. The client provided the following message: “No �ix for this version. This one is
not a bug in the code but is a missing feature on product logic. The product is good for release without a �ix. We may
implement related functions in the future.”

Description

In the current version of the code, the claim function is lacking crucial input validation logic as well as required state changes.
Most of the process is implemented in other contracts or off-chain at the moment and is therefore out of scope for this audit, but
there might still be issues caused by potential errors in the process. Moreover, pool manager and committee together have
unlimited ownership of the deposits and can essentially withdraw all collateral to any desired address.

Examples

contracts/Pool.sol:L588-L592

function claim(
 uint256 policyIndex_,
 uint256 amount_,
 address receipient_
) external onlyPoolManager {

Recommendation

To ensure a more secure claiming process, we propose adding the following logic to the claim function:

1. refund should be called at the beginning of the claim �low, so that the recipient’s true coverage amount will be used.

2. policyIndex should be added as a parameter to this function, so that coverageMap can be used to validate that the amount
claimed on behalf of a recipient is covered.

3. The payout amount should be subtracted in the coveredMap and coverageMap mappings.

3.5 buy – Insurance Buyers Trying to Increase Their Coverage Amount Will Lose Their Previous
Coverage Major ✓ Fixed

Resolution

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing the auditor’s recommendation.

Description

When a user is willing to buy insurance, he is required to specify the desired amount (denoted as amount_) and to pay the entire
premium upfront. In return, he receives the ownership over an entry inside the coverageMap mapping. If a user calls the buy

function more than once for the same policy and time frame, his entry in the coverageMap will not represent the accumulated
amount that he paid for but only the last coverage amount, which means previous coverage will be lost forever (unless the
contract is upgraded).

Examples

contracts/Pool.sol:L266-L280

for (uint256 w = fromWeek_; w < toWeek_; ++w) {
 incomeMap[policyIndex_][w] =
 incomeMap[policyIndex_][w].add(premium);
 coveredMap[policyIndex_][w] =
 coveredMap[policyIndex_][w].add(amount_);

 require(coveredMap[policyIndex_][w] <= maximumToCover,
 "Not enough to buy");

 coverageMap[policyIndex_][w][_msgSender()] = Coverage({
 amount: amount_,
 premium: premium,
 refunded: false
 });
}

Recommendation

The coverage entry that represents the user’s coverage should not be overwritten but should hold the accumulated amount of
coverage instead.

3.6 Several Issues Related to Upgradeability of Contracts Medium ✓ Fixed

Resolution

Partially �ixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d as auditor’s recommendations were implemented except
from introducing __gap variables for NonReentrancy and EventAggregator .

Description

We did not �ind a proxy contract or factory in the repository, but the README contains the following information:

README.md:L11

Every Pool is a standalone smart contract. It is made upgradeable with OpenZeppelin’s Proxy Upgrade Pattern.

README.md:L56

And there will be multiple proxies and one implementation of the Pools, and one proxy and one implementation of EventAggregator.

There are several issues related to upgradeability or, generally, using the contracts as implementations for proxies. All
recommendations in this report assume that it is not necessary to remain compatible with an existing deployment.

A. The Pool.sol �ile imports Initializable.sol from OpenZeppelin’s contracts-upgradeable and several other �iles from their “regular”
contracts package.

contracts/Pool.sol:L5-L10

https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d
https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d

import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

import "@openzeppelin/contracts/utils/Context.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

These two should not be mixed, and in an upgradeable context, all �iles should be imported from contracts-upgradeable . Note that
the import of Ownable.sol in NonReentrancy.sol can be removed completely; see issue 3.20.

B. If upgradeability is supposed to work with inheritance, there should be dummy variables at the end of each contract in the
inheritance hierarchy. Some of these have to be removed when “real” state variables are added. More precisely, it is
conventional to use a �ixed-size uint256 array __gap , such that the consecutively occupied slots at the beginning (for the “real”
state variables) add up to 50 with the size of the array. If state variables are added later, the gap’s size has to be reduced
accordingly to maintain this invariant. Currently, the contracts do not declare such a __gap variable.

C. Implementation contracts should not remain uninitalized. To prevent initialization by an attacker – which, in some cases, can
have an impact on the proxy – the implementation contract’s constructor should call _disableInitializers .

Recommendation

1. Refamiliarize yourself with the subtleties and pitfalls of upgradeable contracts, in particular regarding state variables and
the storage gap. A lot of useful information can be found here.

2. Only import from contracts-upgradeable , not from contracts .

3. Add appropriately-sized storage gaps at least to PoolModel , NonReentrancy , and EventAggregator . (Note that adding a storage gap
to NonReentrancy will break compatibility with existing deployments.) Ideally, add comments and warnings to each �ile that
state variables may only be added at the end, that the storage gap’s size has to be reduced accordingly, and that state
variables must not be removed, rearranged, or in any way altered (e.g., type, constant , immutable). No state variables should
ever be added to the Pool contract, and a comment should make that clear.

4. Add a constructor to Pool and EventAggregator that calls _disableInitializers .

3.7 initialize – Committee Members Array Can Contain Duplicates Medium ✓ Fixed

Resolution

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing a nested loop to de-duplicate committee members.

Description

The initial committee members are given as array argument to the pool’s initialize function. When the array is processed, there
is no check for duplicates, and duplicates may also end up in the storage array committeeArray .

contracts/Pool.sol:L43-L47

for (uint256 i = 0; i < committeeMembers_.length; ++i) {
 address member = committeeMembers_[i];
 committeeArray.push(member);
 committeeIndexPlusOne[member] = committeeArray.length;
}

Duplicates will result in a discrepancy between the length of the array – which is later interpreted as the number of committee
members – and the actual number of (different) committee members. This could lead to more problems, such as an insu�icient
committee size to reach the threshold.

Recommendation

The initialize function should verify in the loop that member hasn’t been added before. Note that _executeAddToCommittee refuses to
add someone who is already in the committee, and the same technique can be employed here.

3.8 addPolicy , setPolicy – Missing Input Validation Medium ✓ Fixed

Resolution

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing the auditor’s recommendation.

Description and Recommendation

Both addPolicy and setPolicy are missing essential input validation on two main parameters:

1. collateralRatio_ – Should be validated to be non-zero, and it might be worth adding a range check.

2. weeklyPremium_ – Should be less than RATIO_BASE at least, and it might be worth adding a maximum value check.

Examples

contracts/Pool.sol:L159

function addPolicy(

contracts/Pool.sol:L143

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable
https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d
https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d

function setPolicy(

3.9 Pool.buy – Users May End Up Paying More Than Intended Due to Changes in

policy.weeklyPremium Medium ✓ Fixed

Resolution

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing the auditor’s recommendation.

Description

The price that an insurance buyer has to pay for insurance is determined by the duration of the coverage and the weeklyPremium .
The price increases as the weeklyPremium increases. If a buy transaction is waiting in the mempool but eventually front-run by
another transaction that increases weeklyPremium , the user will end up paying more than they anticipated for the same insurance
coverage (assuming their allowance to the Pool contract is unlimited or at least higher than what they expected to pay).

Examples

contracts/Pool.sol:L273-L274

uint256 premium = amount_.mul(policy.weeklyPremium).div(RATIO_BASE);
uint256 allPremium = premium.mul(toWeek_.sub(fromWeek_));

Recommendation

Consider adding a parameter for the maximum amount to pay, and make sure that the transaction will revert if allPremium is
greater than this maximum value.

3.10 Missing Validation Checks in execute Medium ✓ Fixed

Resolution

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing the auditor’s recommendations.

Description

The Pool contract implements a threshold voting mechanism for some changes in the contract state, where either the pool
manager or a committee member can propose a change by calling claim , changePoolManager , addToCommittee , removeFromCommittee , or
changeCommitteeThreshold , and then the committee has a time period for voting. If the threshold is reached during this period, then

anyone can call execute to execute the state change.

While some validation checks are implemented in the proposal phase, this is not enough to ensure that business logic rules
around these changes are completely enforced.

1. _executeRemoveFromCommittee – While the removeFromCommittee function makes sure that committeeArray.length > committeeThreshold , i.e., that
there should always be enough committee members to reach the threshold, the same validation check is not enforced in
_executeRemoveFromCommittee . To better illustrate the issue, let’s consider the following example: committeeArray.length = 5 ,
committeeThreshold = 4 , and now removeFromCommittee is called two times in a row, where the second call is made before the �irst

call reaches the threshold. In this case, both requests will be executed successfully, and we end up with
committeeArray.length = 3 and committeeThreshold = 4 , which is clearly not desired.

2. _executeChangeCommitteeThreshold – Applying the same concept here, this function lacks the validation check of
threshold_ <= committeeArray.length , leading to the same issue as above. Let’s consider the following example:
committeeArray.length = 3 , committeeThreshold = 2 , and now changeCommitteeThreshold is called with threshold_ = 3 , but before this

request is executed, removeFromCommittee is called. After both requests have been executed successfully, we will end up with
committeeThreshold = 3 and committeeArray.length = 2 , which is clearly not desired.

Examples

contracts/Pool.sol:L783

function _executeRemoveFromCommittee(address who_) private {

contracts/Pool.sol:L796

function _executeChangeCommitteeThreshold(uint256 threshold_) private {

Recommendation

Apply the same validation checks in the functions that execute the state change.

3.11 Reentrancy Concerns Minor ✓ Fixed

Resolution

https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d
https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing the auditor’s recommendations.

Description and Recommendation

A. All external functions in the Pool contract that make calls to the base or the Tidal token – and only these – have a noReenter

modi�ier. That means that it is not possible to reenter the contract through these functions, but it could still be possible to
reenter the pool through a different external or public function that does not have such a modi�ier. Assuming the token contract
allows reentrancy, the following could happen, for instance:

1. Alice calls withdrawReady .

2. During the call to the token contract, Alice gets control of execution through a callback.

3. She reenters the pool contract through the withdraw function.

Note that, at this point, userInfo.pendingWithdrawShare has a “wrong” value because we left the Pool contract before this state
variable was updated. So the reentering call is operating on inconsistent state.

We didn’t �ind a way to cause actual harm through this or similar reentrancies, but to rely on this kind of reasoning is
dangerous, and there’s always the risk to miss something. It is, therefore, recommended to add a noReenter modi�ier to all state-
changing external functions, in particular the ones operating with shares.

B. A second concern is reentrancy through view functions. In the example above, note that when we leave the pool contract, it
is not only userInfo.pendingWithdrawShare that hasn’t been updated yet, it is also poolInfo.pendingWithdrawShare . Hence, if we call, for
example, getAvailableCapacity in step number 3, we will get a wrong result.

If this or other view functions are supposed to give reliable results under all circumstances, they should revert if islocked is true

. (This state variable is currently private and not accessible in the derived contract Pool , so a small change has to be made in
the NonReentrancy contract, too.)

3.12 Hard-Coded Minimum Deposit Amount Minor ✓ Fixed

Resolution

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing the auditor’s recommendation.

Description

The deposit function speci�ies a minimum amount of 1e12 units of the base token for a deposit:

contracts/Pool.sol:L22

uint256 constant AMOUNT_PER_SHARE = 1e18;

contracts/Pool.sol:L369-L376

// Anyone can be a seller, and deposit baseToken (e.g. USDC or WETH)
// to the pool.
function deposit(
 uint256 amount_
) external noReenter {
 require(enabled, "Not enabled");

 require(amount_ >= AMOUNT_PER_SHARE / 1000000, "Less than minimum");

Whether that’s an appropriate minimum amount or not depends on the base token. Note that the two example tokens listed
above are USDC and WETH. With current ETH prices, 1e12 Wei cost an affordable 0.2 US Cent. USDC, on the other hand, has 6
decimals, so 1e12 units are worth 1 million USD, which is … steep.

Recommendation

The minimum deposit amount should be con�igurable.

3.13 Unnecessary Use of SafeMath Library Minor ✓ Fixed

Resolution

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing the auditor’s recommendation.

Description

Since Solidity v0.8.0, all arithmetic operations are checked by default and revert on over- or under�low. Hence, it is not
necessary anymore to use the SafeMath library (or SafeMathUpgradeable). Employing it nonetheless not only wastes gas but also
reduces the readability of arithmetic expressions considerably.

Examples

The assignment

poolInfo.accTidalPerShare = poolInfo.accTidalPerShare.add(amount_.mul(SHARE_UNITS).div(poolInfo.totalShare));

https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d
https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d
https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d
https://blog.soliditylang.org/2020/12/16/solidity-v0.8.0-release-announcement/

is a lot easier to read without SafeMath :

poolInfo.accTidalPerShare += amount_ * SHARE_UNITS / poolInfo.totalShare;

See also issue 3.3.

Recommendation

We recommend using the built-in arithmetic operations instead of SafeMath .

3.14 Outdated Solidity Version Minor ✓ Fixed

Resolution

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing the auditor’s recommendation.

Description

The source �iles' version pragmas either specify that they need compiler version exactly 0.8.10 or at least 0.8.10:

contracts/Pool.sol:L2

pragma solidity 0.8.10;

contracts/helper/EventAggregator.sol:L2

pragma solidity ^0.8.10;

Solidity v0.8.10 is a fairly dated version that has known security issues. We generally recommend using the latest version of the
compiler (at the time of writing, this is v0.8.20), and we also discourage the use of �loating pragmas to make sure that the
source �iles are actually compiled and deployed with the same compiler version they have been tested with.

Recommendation

Use the Solidity compiler v0.8.20, and change the version pragma in all Solidity source �iles to pragma solidity 0.8.20; .

3.15 Code Used for Testing Purposes Should Be Removed Before Deployment Minor ✓ Fixed

Resolution

Fixed in 49d6afd6abc463dd3fde3df0df715c475bb3e013 by implementing the auditor’s recommendation.

Description

Variables and logic have been added to the code whose only purpose is to make it easier to test. This might cause unexpected
behavior if deployed in production. For instance, onlyTest and setTimeExtra should be removed from the code before deployment,
as well as timeExtra in getCurrentWeek and getNow .

Examples

contracts/Pool.sol:L55

modifier onlyTest() {

contracts/Pool.sol:L67

function setTimeExtra(uint256 timeExtra_) external onlyTest {

contracts/Pool.sol:L71-L73

function getCurrentWeek() public view returns(uint256) {
 return (block.timestamp + TIME_OFFSET + timeExtra) / (7 days);
}

contracts/Pool.sol:L75-L77

function getNow() public view returns(uint256) {
 return block.timestamp + timeExtra;
}

Recommendation

For the long term, consider mimicking this behavior by using features offered by your testing framework.

3.16 Missing Events Minor ✓ Fixed

https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d
https://docs.soliditylang.org/en/latest/bugs.html
https://github.com/TidalFinance/tidal-contracts-v2/tree/49d6afd6abc463dd3fde3df0df715c475bb3e013

Resolution

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing the auditor’s recommendations.

Description

Some state-changing functions do not emit an event at all or omit relevant information.

Examples

A. Pool.setEventAggregator should emit an event with the value of eventAggregator_ so that off-chain services will be noti�ied and can
automatically adjust.

contracts/Pool.sol:L93-L95

function setEventAggregator(address eventAggregator_) external onlyPoolManager {
 eventAggregator = eventAggregator_;
}

B. Pool.enablePool should emit an event when the pool is dis- or enabled.

contracts/Pool.sol:L581-L583

function enablePool(bool enabled_) external onlyPoolManager {
 enabled = enabled_;
}

C. Pool.execute only logs the requestIndex_ while it should also include the operation and data to better re�lect the state change in
the transaction.

contracts/Pool.sol:L756-L760

if (eventAggregator != address(0)) {
 IEventAggregator(eventAggregator).execute(
 requestIndex_
);
}

Recommendation

State-changing functions should emit an event to have an audit trail and enable monitoring of smart contract usage.

3.17 CommitteeRequest , WithdrawRequest - Should Use an enum Type ✓ Fixed

Resolution

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing the auditor’s recommendation.

Description and Recommendation

A. There are 5 different operations: claim , changePoolManager , addToCommittee , removeFromCommittee , and changeCommitteeThreshold . These
operations are numbered from 0 to 4, and this number is stored as a uint8 in committee requests:

contracts/model/PoolModel.sol:L99-L104

struct CommitteeRequest {
 uint256 time;
 uint256 vote;
 bool executed;
 uint8 operation;
 bytes data;

Developers have to remember or look up which number denotes which operation:

contracts/Pool.sol:L738-L754

if (cr.operation == 0) {
 (uint256 amount, address receipient) = abi.decode(
 cr.data, (uint256, address));
 _executeClaim(amount, receipient);
} else if (cr.operation == 1) {
 address poolManager = abi.decode(cr.data, (address));
 _executeChangePoolManager(poolManager);
} else if (cr.operation == 2) {
 address newMember = abi.decode(cr.data, (address));
 _executeAddToCommittee(newMember);
} else if (cr.operation == 3) {
 address oldMember = abi.decode(cr.data, (address));
 _executeRemoveFromCommittee(oldMember);
} else if (cr.operation == 4) {
 uint256 threshold = abi.decode(cr.data, (uint256));
 _executeChangeCommitteeThreshold(threshold);
}

https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d
https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d

This is error-prone and tedious. An enum type is a safer and more convenient way to encode the different operations. In fact,
this is a textbook scenario for employing an enum, and we recommend doing so.

B. Withdrawal requests are �irst created with the withdraw function. After withdrawWaitWeeks1 weeks, they can be advanced to a
“pending” status by calling withdrawPending . Finally, after another withdrawWaitWeeks2 weeks, the request can be executed via
withdrawReady .

This is currently implemented via two boolean members in the WithdrawRequest struct, pending and executed :

contracts/model/PoolModel.sol:L72-L78

struct WithdrawRequest {
 uint256 share;
 uint256 time;
 bool pending;
 bool executed;
 bool succeeded;
}

Initially, when the request is created, they’re both set to false . For a pending request, pending is true , and executed remains at
false . Finally, they’re both set to true for an executed request.

An object transitioning through a series of states is another excellent use case for enums. In this example, the state could be
modeled with an enum as follows: enum Status { Created, Pending, Executed } . This approach has several advantages compared to the
implementation with two boolean variables:

It uses only one variable, instead of two. In particular, setting and querying the state only involves one variable.

It can be easily extended to more states without introducing additional variables.

The object can never be in more than one state at once or in an unde�ined state. (With the current implementation, it would
be possible to have pending == false and executed == true .)

Remark

It is often a good idea to have something like “None” or “NonExistent” as �irst value in the enum. That makes it easy to
distinguish “real” objects from unchanged storage, as in: “Here is no object.” In the two examples above, that is not necessary,
but it wouldn’t hurt either.

3.18 No NatSpec Annotations

Description

NatSpec is the de facto standard for the annotation of Solidity �iles. To quote the Solidity documentation:

It is recommended that Solidity contracts are fully annotated using NatSpec for all public interfaces (everything in the
ABI).

The Tidal codebase does not use NatSpec, and there’s not a lot of documentation and comments in general.

Recommendation

Use NatSpec documentation and follow the advice in the quote.

3.19 vote - Voting “No” Has No Effect ✓ Fixed

Resolution

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing the auditor’s recommendation.

Description

Committee members can vote on proposals with either “yes” or “no”. Voting “no” has no effect at all, i.e., there is no state
change or event emitted, no return value, etc.

contracts/Pool.sol:L695-L701

function vote(
 uint256 requestIndex_,
 bool support_
) external onlyCommittee {
 if (!support_) {
 return;
 }

This means voting with “no” is pointless, and the option to do so could be removed completely.

Recommendation

Consider removing the bool support_ parameter from the vote function, such that calling vote is always a “yes” vote. Maybe
rename the function to make this more explicit.

3.20 Unused Import ✓ Fixed

Resolution

https://docs.soliditylang.org/en/v0.8.20/types.html#enums
https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing the auditor’s recommendation.

Description

The �ile NonReentrancy.sol imports Ownable.sol , but this import is not used.

contracts/common/NonReentrancy.sol:L4

import "@openzeppelin/contracts/access/Ownable.sol";

Recommendation

Remove the unnecessary import.

3.21 Unnecessary and Outdated Pragma Directive ✓ Fixed

Resolution

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing the auditor’s recommendation.

Description

The Pool.sol source �ile uses the pragma directive pragma experimental ABIEncoderV2; :

contracts/Pool.sol:L3

pragma experimental ABIEncoderV2;

ABI coder V2 is the default since Solidity v0.8.0 and is considered non-experimental as of Solidity v0.6.0. Hence, this directive is
not necessary and even a bit misleading because the “experimental” status was removed long ago.

Recommendation

This line can be removed. If you want to be explicit for some reason, it should be replaced with pragma abicoder v2; .

3.22 vote Could Call execute When committeeThreshold Is Reached ✓ Fixed

Resolution

Fixed in 3bbafab926df0ea39f444ef0fd5d2a6197f99a5d by implementing the auditor’s recommendation.

Description and Recommendation

In the current version of the code, an additional transaction to execute is needed in case the threshold was reached for a speci�ic
request. Instead, execute could be invoked as part of vote when the threshold is reached.

contracts/Pool.sol:L714

cr.vote = cr.vote.add(1);

Appendix 1 - Files in Scope
This audit covered the following �iles:

File Name SHA-1 Hash

contracts/Pool.sol bde682116b477e2a7ddbc797fefaa0dcd76ace20

contracts/model/PoolModel.sol bb4dfc828e9c4b1bbeafe13c25a87403d6c33c0a

contracts/interface/IEventAggregator.sol 6c337d6598398e01a7a9afc98fea96e83e80456b

contracts/helper/EventAggregator.sol e1fa13dc00a8bcfdbbf9a8b952259dfa1cd63be3

contracts/common/NonReentrancy.sol 8ae831e28d8873a41bd3d9a18f8f637be8033318

Appendix 2 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the

https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d
https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d
https://github.com/TidalFinance/tidal-contracts-v2/tree/3bbafab926df0ea39f444ef0fd5d2a6197f99a5d

Reports in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Speci�ically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of code and only the code we note as being within the scope of our
review within this report. Any Solidity code itself presents unique and unquanti�iable risks as the Solidity language itself remains
under development and is subject to unknown risks and �laws. The review does not extend to the compiler layer, or any other
areas beyond speci�ied code that could present security risks. Cryptographic tokens are emergent technologies and carry with
them high levels of technical risk and uncertainty. In some instances, we may perform penetration testing or infrastructure
assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) – on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites' owners. You agree that ConsenSys and CD are not responsible for the content
or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the
use of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or
mean that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

https://consensys.io/

