Fei Tribechief

1 Executive Summary

2 Scope

2.1 Objectives

3 Findings

3.1 TribalChief - A wrong
user.rewardDebt valueis
calculated during the
withdrawFromDeposit function

call

3.2 TribalChief - Setting the
totalAllocPoint to zero
shouldn’t be allowed 'Medium

3.3 TribalChief - Unlocking users’

funds in a pool where a multiplier

has been increased is missing
Medium

3.4 TribalChief - Unsafe down-
castings 'Medium

3.5 EthCompoundPCVDeposit -
should provide means to recover
ETH Medium

3.6 TribalChief - Governor
decrease of pool’s allocation point
should unlock depositors’ funds

3.7 TribalChief - new block reward
retrospectively takes effect on
pools that have not been updated

recently [

3.8 TribalChief - duplicate import

SafeERC20 (I3

3.9 TribalChief - resetRewards
should emit an event ({53

4 Recommendations

4.1 EthCompoundPCVDeposit -
stick to upstream interface
contract names

4.2 CompoundPCVDepositBase -
verify provided CToken address is
actually a CToken

4.3 CompoundPCV -
documentation & testing

4.4 TribalChief - immutable vs
constant

4.5 TribalChief -
governorAddPoolMultiplier
should emit a PoolLocked event

4.6 TribalChief - updatePool
invocation inside _harvest
should be moved to harvest
instead

Appendix 1- Disclosure

Book your 1-Day Security
Spot Check

The review was conducted over one week, from July 12th, 2021 to July 16, 2021

by Sergii Kravchenko, Martin Ortner and David Oz Kashi. A total of 15 person- Date July 2021

1 Executive Summary

This report presents the results of our engagement with Fei Protocol to review
their new staking contracts.

days were spent.
Y P Sergii Kravchenko, Martin

Auditors i)
Ortner, David Oz Kashi

2 Scope

Our review focused on the commit hash 3cs5d72aaf6f1f60850165a7a9b2e4d59c380551 . The primary focus was to review the new staking
component:

e StakingTokenWrapper.sol
e TribalChief.sol

Additionally, we made a superficial review of the Compound PCV contracts.

2.1 Objectives
Together with the Fei Protocol team, we identified the following priorities for our review:

1. Ensure that the system is implemented consistently with the intended functionality, and without unintended edge cases.

2. ldentify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
Smart Contract Weakness Classification Registry.

3 Findings
Each issue has an assigned severity:

o ([issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

* Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

. issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

3.1 TribalChief - A wrong user .rewardDebt value is calculated during the
withdrawFromDeposit function call

Description
When withdrawing a single deposit, the reward debt is updated:

contracts/staking/TribalChief.sol:L468-L474

uint128 virtualAmountDelta = uint128((amount * poolDeposit.multiplier) / SCALE_FACTOR);

poolDeposit.amount -= amount;

user.rewardDebt = user.rewardDebt - toSigned128(user.virtualAmount * pool.accTribePerShare) / toSigned128(ACC_TRIBE_PRECISION);
user.virtualAmount -= virtualAmountDelta;

pool.virtualTotalSupply -= virtualAmountDelta;

Instead of the user.virtualamount in reward debt calculation, the virtualamountbeita should be used. Because of that bug, the reward
debt is much lower than it would be, which means that the reward itself will be much larger during the harvest. By making
multiple deposit-withdraw actions, any user can steal all the Tribe tokens from the contract.

Recommendation

Use the virtualAmountbelta instead of the user.virtualAmount .

3.2 TribalChief - Setting the totalAllocPoint to zero shouldn’t be allowed wediim

Description

TribalChief.updatePool Will revert in the case totalallocpoint = 8 , Which will essentially cause users’ funds and rewards to be locked.

Recommendation

https://github.com/fei-protocol/fei-protocol-core-internal/tree/3c55d72aaf6f1f60850165a7a9b2e4d59c380551
https://github.com/fei-protocol/fei-protocol-core-internal/blob/3c55d72aaf6f1f60850165a7a9b2e4d59c380551/contracts/staking/StakingTokenWrapper.sol
https://github.com/fei-protocol/fei-protocol-core-internal/blob/3c55d72aaf6f1f60850165a7a9b2e4d59c380551/contracts/staking/TribalChief.sol
https://github.com/fei-protocol/fei-protocol-core-internal/tree/3c55d72aaf6f1f60850165a7a9b2e4d59c380551/contracts/pcv/compound
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://pages.consensys.net/diligence-1-day-spot-check

TribalChief.add and Tribalchief.set Should assert that totalallocPoint > @ . A similar validation check should be added to

TribalChief.updatePool AS well.

3.3 TribalChief - Unlocking users’ funds in a pool where a multiplier has been increased is missing

Medium

Description

When a user deposits funds to a pool, the current multiplier in use for this pool is being stored locally for this deposit. The value
that is used later in a withdrawal operation is the local one, and not the one that is changing when a governor calls
governorAddPoolMultiplier . It means that a decrease in the multiplier value for a given pool does not affect users that already
deposited, but an increase does. Users that had already deposited should have the right to withdraw their funds when the
multiplier for their pool increases by the governor .

Examples

code/contracts/staking/TribalChief.sol:L143-L158

function governorAddPoolMultiplier(
uint256 _pid,
uint64 lockLength,
uint64 newRewardsMultiplier
) external onlyGovernor {
PoolInfo storage pool = poolInfo[_pid];
uint256 currentMultiplier = rewardMultipliers[_pid][lockLength];

if (newRewardsMultiplier < currentMultiplier) {
pool.unlocked = true;

}
rewardMultipliers[_pid][lockLength] = newRewardsMultiplier;

emit LogPoolMultiplier(_pid, lockLength, newRewardsMultiplier);

Recommendation

Replace the < operator with > in Tribalchief line 152.

3.4 TribalChief - Unsafe down-castings wedium
Description

Tribalchief consists of multiple unsafe down-casting operations. While the usage of types that can be packed into a single
storage slot is more gas efficient, it may introduce hidden risks in some cases that can lead to loss of funds.

Examples
Various instances in Tribalchief , including (but not necessarily only) :

code/contracts/staking/TribalChief.sol:L429

user.rewardDebt = int128(user.virtualAmount * pool.accTribePerShare) / toSigned128(ACC_TRIBE_PRECISION);

code/contracts/staking/TribalChief.sol:L326

pool.accTribePerShare = uint128(pool.accTribePerShare + ((tribeReward * ACC_TRIBE_PRECISION) / virtualSupply));

code/contracts/staking/TribalChief.sol:L358

userPoolData.rewardDebt += int128(virtualAmountDelta * pool.accTribePerShare) / toSigned128(ACC_TRIBE_PRECISION);

Recommendation

Given the time constraints of this audit engagement, we could not verify the implications and provide mitigation actions for each
of the unsafe down-castings operations. However, we do recommend to either use numeric types that use 256 bits, or to add
proper validation checks and handle these scenarios to avoid silent over/under-flow errors. Keep in mind that reverting these
scenarios can sometimes lead to a denial of service, which might be harmful in some cases.

3.5 EthCompoundPCVDeposit - should provide means to recover ETH edium

Description

EthCompoundPCVDeposit aCCEPtS ETH Via receive() . Anyone can call EthcompoundPCvbeposit.deposit() tO mint ctoken for the contracts et
balance.

The ctoken to be used is configured on EthcompoundPcvbeposit deployment. It is not checked, whether the provided ctoken address is
actually a valid cToken .

If the configured cToken ceases to work correctly (e.g. cToken.mint|redeems disabled or the configured ctoken address is invalid),
etH held by the contract may be locked up.

Recommendation

Similar to EthLidopcvbeposit add a method witdraweTH , access-restricted to onlypcvcontroller , that allows recovering et from the
EthCompoundPCVDeposit coNtract in case the crtoken contract throws. (Consider moving this functionality to pcvbeposit Where
withdrawerc2e is implemented to avoid having to implement this over and over again)

In compoundPcvDepositBase consider verifying, that the ctoken constructor argument is actually a valid ctoken by checking

require(ctoken.isCToken(), "not a valid CToken") .

3.6 TribalChief - Governor decrease of pool’s allocation point should unlock depositors’ funds czm

Description

When the Tribalchief governor decreases the ratio between the allocation point (PoolInfo.allocPoint) and the total allocation point
(totalallocpoint) for a specific pool (either be directly decreasing poolinfo.allocroint Of a given pool, or by increasing this value for
other pools), the total reward for this pool is decreased as well. Depositors should be able to withdraw their funds immediately
after this kind of change.

Examples

code/contracts/staking/TribalChief.sol:L252-L261

function set(uint256 _pid, uint128 _allocPoint, IRewarder _rewarder, bool overwrite) public onlyGovernor {
totalAllocPoint = (totalAllocPoint - poolInfo[_pid].allocPoint) + _allocPoint;
poolInfo[_pid].allocPoint = _allocPoint.toUint64();

if (overwrite) {
rewarder[_pid] = _rewarder;

}

emit LogSetPool(_pid, _allocPoint, overwrite ? _rewarder : rewarder[_pid], overwrite);

Recommendation

Make sure that depositors’ funds are unlocked for pools that affected negatively by calling Tribalchief.set .

3.7 TribalChief - new block reward retrospectively takes effect on pools that have not been updated
recently ¢z

Description

When the governor updates the block reward tribalchiefTribererlock the new reward is applied for the outstanding duration of
blocks in updatePool . This means, if a pool hasn’t updated in a while (unlikely) the new block reward is retrospectively applied to
the pending duration instead of starting from when the block reward changed.

Examples
e rewards calculation

code/contracts/staking/TribalChief.sol:L323-L327

if (virtualSupply > @) {
uint256 blocks = block.number - pool.lastRewardBlock;
uint256 tribeReward = (blocks * tribePerBlock() * pool.allocPoint) / totalAllocPoint;
pool.accTribePerShare = uint128(pool.accTribePerShare + ((tribeReward * ACC_TRIBE_PRECISION) / virtualSupply));

e updating the block reward

code/contracts/staking/TribalChief.sol:L111-L116

function updateBlockReward(uint256 newBlockReward) external onlyGovernor {
tribalChiefTribePerBlock = newBlockReward;
emit NewTribePerBlock(newBlockReward) ;

Recommendation

It is recommended to update pools before changing the block reward. Document and make users aware that the new reward is
applied to the outstanding duration when calling updatepool .

3.8 TribalChief - duplicate import SafeERC20 ¢

Description

Duplicate import for SafeERC20.

Examples

code/contracts/staking/TribalChief.sol:L7-L8

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.s0l";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.s0l";

Recommendation
Remove duplicate import line.
3.9 TribalChief - resetRewards should emit an event g

Description

The method resetrewards silently resets a pools tribe allocation.

Examples

code/contracts/staking/TribalChief.sol:L263-L275

function resetRewards(uint256 _pid) public onlyGuardianOrGovernor {

totalAllocPoint = (totalAllocPoint - poolInfo[_pid].allocPoint);
poolInfo[_pid].allocPoint = 0;

poolInfo[_pid].unlocked = true;

rewarder[_pid] = IRewarder(address(0));

Recommendation

For transparency and to create an easily accessible audit trail of events consider emitting an event when resetting a pools
allocation.

4 Recommendations

4.1 EthCompoundPCVDeposit - stick to upstream interface contract names

Recommendation

Stick to the original upstream interface names to make clear with which external system the contract interacts with. Rename
ceth to cether . See original upstream interface name.

code/contracts/pcv/compound/EthCompoundPCVDeposit.sol:L6-L8

interface CEth {
function mint() external payable;

}

4.2 CompoundPCVDepositBase - verify provided CToken address is actually a CToken

Recommendation

The ctoken address provided when deploying a new xcompoundpcvbeposit is never validated. Consider adding the following check:

require(_cToken.isCToken, "not a valid CToken") .

code/contracts/pcv/compound/CompoundPCVDepositBase.sol:L25-L30

constructor (
address _core,
address _cToken
) CoreRef(_core) {
cToken = CToken(_cToken);

}

4.3 CompoundPCV - documentation & testing

Recommendation

Currently, the PCV flavor is only unit-tested using a mocked croken . Consider providing integration tests that actually integrate
and operate it in a compound test environment.

Provide a specification. & documentation describing the roles and functionality of the contract. Who deployes the PCVDeposit
contract? Who Deploys the CToken and therefore may be in control of certain adminOnly functions of the CToken? What are the
requirements for a CToken to be usable with CompoundPCVDeposit (listed/unlisted, ...)? Who has the potential power to borrow
assets on behalf of the collateral provided?

4.4 TribalChief - immutable vs constant
Recommendation
Constant state variables that are not initialized with the constructor can be constant instead of immutable .

code/contracts/staking/TribalChief.sol:L88-L90

uint256 private immutable ACC_TRIBE_PRECISION = 1e12;

uint256 public immutable SCALE_FACTOR = 1e18;

4.5 TribalChief - governorAddPoolMultiplier should emit a PoolLocked event

Description

Users should be notified if the pool gets unlocked during a call to governoraddrooimultiplier . Consider emitting a PoolLocked(false)
event.

code/contracts/staking/TribalChief.sol:L143-L158

https://github.com/compound-finance/compound-protocol/blob/cce8c8836d21ac307df918a4ca46f0b83dbe2757/contracts/CEther.sol#L10

function governorAddPoolMultiplier(
uint256 _pid,
uint64 locklLength,
uint64 newRewardsMultiplier
) external onlyGovernor {
PoolInfo storage pool = poolInfo[_pid];
uint256 currentMultiplier = rewardMultipliers[_pid][lockLength];
// if the new multplier is less than the current multiplier,
// then, you need to unlock the pool to allow users to withdraw
if (newRewardsMultiplier < currentMultiplier) {
pool.unlocked = true;

}
rewardMultipliers[_pid][lockLength] = newRewardsMultiplier;

emit LogPoolMultiplier(_pid, lockLength, newRewardsMultiplier);

4.6 TribalChief - updatePool invocationinside _harvest should be movedto harvest instead

Description

When Tribalchief.withdrawAllAndHarvest iS executed, there’s a redundant invocation of Tribalchief.updatePool that caused by
TribalChief._harvest , that can be moved to Tribalchief.harvest instead.

Examples

code/contracts/staking/TribalChief.sol:L485-L515

function _harvest(uint256 pid, address to) private {
updatePool(pid);
PoolInfo storage pool
UserInfo storage user

poolInfo[pid];
userInfo[pid] [msg.sender];

// assumption here is that we will never go over 27128 -1
int256 accumulatedTribe = int256(uint256(user.virtualAmount) * uint256(pool.accTribePerShare)) / int256(ACC_TRIBE_PRECISIC

// this should never happen
require(accumulatedTribe >= @ || (accumulatedTribe - user.rewardDebt) < @, "negative accumulated tribe");

uint256 pendingTribe = uint256(accumulatedTribe - user.rewardDebt);

// if pending tribe is ever negative, revert as this can cause an underflow when we turn this number to a uint
require(pendingTribe.toInt256() >= 0, "pendingTribe is less than 8");

// Effects
user.rewardDebt = int128(accumulatedTribe);

// Interactions

if (pendingTribe !'= @) {
TRIBE.safeTransfer(to, pendingTribe);

}

IRewarder _rewarder = rewarder[pid];
if (address(_rewarder) != address(0)) {
_rewarder.onSushiReward(pid, msg.sender, to, pendingTribe, user.virtualAmount);

}

emit Harvest(msg.sender, pid, pendingTribe);

Appendix 1 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of code and only the code we note as being within the scope of our review
within this report. Any Solidity code itself presents unique and unguantifiable risks as the Solidity language itself remains under
development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas
beyond specified code that could present security risks. Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. In some instances, we may perform penetration testing or infrastructure
assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) - on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are not responsible for the content

or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the use
of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or mean
that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

Request a Security Review Today

Get in touch with our team to request a quote for a smart contract audit or a 1-day security review.

CONTACT US

AUDITS

Subscribe to Our Newsletter
BLOG

Stay up-to-date on our latest offerings, tools, and

TOOLS the world of blockchain security.

RESEARCH

ABOUT e-mail address
CONTACT

CAREERS

PRIVACY POLICY

rowereo ey Y CONSENSYS

http://localhost:1313/diligence/audits/
http://localhost:1313/diligence/blog/
http://localhost:1313/diligence/tools/
http://localhost:1313/diligence/research/
http://localhost:1313/diligence/about/
http://localhost:1313/diligence/contact/
https://consensys.net/open-roles/?discipline=32525
http://localhost:1313/diligence/privacy-policy/
https://consensys.net/
http://localhost:1313/diligence/contact/

