
PoolTogether — Sushi and Yearn V2
Yield Sources

Book your 1-Day Security
Spot Check

Date May 2021

Auditors
Heiko Fisch, Sergii
Kravchenko

1 Executive Summary
This report presents the results of our engagement with PoolTogether to review
their Sushi and Yearn V2 yield sources.

The review was conducted over one week, from May 24 to May 28 by Heiko
Fisch and Sergii Kravchenko. A total of 10 person-days were spent.

2 Scope
Our review focused on the commit hashes ccaf9d73f8cf5c0c41f6e4d640d9b186c51bc3ce for
the Sushi yield source and a34857f1555908a6263d2ebd189f0cb40e1858da for the Yearn V2 yield source. The list of �iles in scope can be
found in the Appendix.

As per the client’s request, higher priority was given to the Sushi yield source. Due to the limited time available, the review of
the Yearn V2 yield source had to remain super�icial. It should also be noted that the contracts were reviewed in isolation,
without a thorough understanding of the rest of the system.

3 Findings
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

Major issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be �ixed.

3.1 Yearn: Re-entrancy attack during deposit Critical

Description

During the deposit in the supplyTokenTo function, the token transfer is happening after the shares are minted and before tokens
are deposited to the yearn vault:

code/pooltogether-yearnv2-yield-source/contracts/yield-source/YearnV2YieldSource.sol:L117-L128

function supplyTokenTo(uint256 _amount, address to) override external {
 uint256 shares = _tokenToShares(_amount);

 _mint(to, shares);

 // NOTE: we have to deposit after calculating shares to mint
 token.safeTransferFrom(msg.sender, address(this), _amount);

 _depositInVault();

 emit SuppliedTokenTo(msg.sender, shares, _amount, to);
}

If the token allows the re-entrancy (e.g., ERC-777), the attacker can do one more transaction during the token transfer and call
the supplyTokenTo function again. This second call will be done with already modi�ied shares from the �irst deposit but non-
modi�ied token balances. That will lead to an increased amount of shares minted during the supplyTokenTo . By using that
technique, it’s possible to steal funds from other users of the contract.

Recommendation

Have the re-entrancy guard on all the external functions.

3.2 Yearn: Partial deposits are not processed properly Major

Description

The deposit is usually made with all the token balance of the contract:

code/pooltogether-yearnv2-yield-source/contracts/yield-source/YearnV2YieldSource.sol:L171-L172

1 Executive Summary

2 Scope

3 Findings

3.1 Yearn: Re-entrancy attack
during deposit Critical

3.2 Yearn: Partial deposits are not
processed properly Major

3.3 Sushi: redeemToken redeems
less than it should Medium

3.4 Sushi: balanceOfToken
underestimates balance Medium

3.5 Yearn: Redundant approve
call Minor

3.6 Sushi: Some state variables
should be immutable and have
more speci�ic types Minor

3.7 Sushi: Unnecessary balance
queries Minor

3.8 Sushi: Unnecessary function
declaration in interface Minor

Appendix 1 - Files in Scope

A.1.1
Sushi Yield Source

A.1.2
Yearn V2 Yield Source

Appendix 2 - Disclosure

BOOK NOW

https://github.com/pooltogether/sushi-pooltogether/tree/ccaf9d73f8cf5c0c41f6e4d640d9b186c51bc3ce
https://github.com/pooltogether/pooltogether-yearnv2-yield-source/tree/a34857f1555908a6263d2ebd189f0cb40e1858da
https://github.com/pooltogether/sushi-pooltogether/tree/ccaf9d73f8cf5c0c41f6e4d640d9b186c51bc3ce
https://github.com/pooltogether/pooltogether-yearnv2-yield-source/tree/a34857f1555908a6263d2ebd189f0cb40e1858da
https://pages.consensys.net/diligence-1-day-spot-check

// this will deposit full balance (for cases like not enough room in Vault)
return v.deposit();

The Yearn vault contract has a limit of how many tokens can be deposited there. If the deposit hits the limit, only part of the
tokens is deposited (not to exceed the limit). That case is not handled properly, the shares are minted as if all the tokens are
accepted, and the “change” is not transferred back to the caller:

code/pooltogether-yearnv2-yield-source/contracts/yield-source/YearnV2YieldSource.sol:L117-L128

function supplyTokenTo(uint256 _amount, address to) override external {
 uint256 shares = _tokenToShares(_amount);

 _mint(to, shares);

 // NOTE: we have to deposit after calculating shares to mint
 token.safeTransferFrom(msg.sender, address(this), _amount);

 _depositInVault();

 emit SuppliedTokenTo(msg.sender, shares, _amount, to);
}

Recommendation

Handle the edge cases properly.

3.3 Sushi: redeemToken redeems less than it should Medium

Description

The redeemToken function takes as argument the amount of SUSHI to redeem. Because the SushiBar ’s leave function – which has to
be called to achieve this goal – takes an amount of xSUSHI that is to be burned in exchange for SUSHI, redeemToken has to
compute the amount of xSUSHI that will result in a return of as many SUSHI tokens as were requested.

code/sushi-pooltogether/contracts/SushiYieldSource.sol:L62-L87

/// @notice Redeems tokens from the yield source from the msg.sender, it burn yield bearing tokens and return token to the sender.
/// @param amount The amount of `token()` to withdraw. Denominated in `token()` as above.
/// @return The actual amount of tokens that were redeemed.
function redeemToken(uint256 amount) public override returns (uint256) {
 ISushiBar bar = ISushiBar(sushiBar);
 ISushi sushi = ISushi(sushiAddr);

 uint256 totalShares = bar.totalSupply();
 uint256 barSushiBalance = sushi.balanceOf(address(bar));
 uint256 requiredShares = amount.mul(totalShares).div(barSushiBalance);

 uint256 barBeforeBalance = bar.balanceOf(address(this));
 uint256 sushiBeforeBalance = sushi.balanceOf(address(this));

 bar.leave(requiredShares);

 uint256 barAfterBalance = bar.balanceOf(address(this));
 uint256 sushiAfterBalance = sushi.balanceOf(address(this));

 uint256 barBalanceDiff = barBeforeBalance.sub(barAfterBalance);
 uint256 sushiBalanceDiff = sushiAfterBalance.sub(sushiBeforeBalance);

 balances[msg.sender] = balances[msg.sender].sub(barBalanceDiff);
 sushi.transfer(msg.sender, sushiBalanceDiff);
 return (sushiBalanceDiff);
}

Because the necessary calculations involve division and amounts have to be integral values, it is usually not possible to get the
exact amount of SUSHI tokens that were requested. More precisely, let a denote the total supply of xSUSHI and b the SushiBar ’s
balance of SUSHI at a certain point in time. If the SushiBar ’s leave function is supplied with x xSUSHI, then it will transfer
floor(x * b / a) SUSHI. (We assume throughout this discussion that the numbers involved are small enough such that no

over�low occurs and that a and b are not zero.)
Hence, if y is the amount of SUSHI requested, it would make sense to call leave with the biggest number x that satis�ies
floor(x * b / a) <= y or the smallest number x that satis�ies floor(x * b / a) >= y . Which of the two is “better” or “correct” needs to

be speci�ied, based on the requirements of the caller of redeemToken . It seems plausible, though, that the �irst variant is the one
that makes more sense in this context, and the current implementation of redeemToken supports this hypothesis. It calls leave with
x1 := floor(y * a / b) , which gives us floor(x1 * b / a) <= y . However, x1 is not necessarily the biggest number that satis�ies the

relation, so the caller of redeemToken might end up with less SUSHI than they could have gotten while still not exceeding y .

The correct amount to call leave with is x2 := floor((y * a + a - 1) / b) = max { x | floor(x * b / a) <= y } . Since |x2 - x1| <= 1 , the
difference in SUSHI is at most floor(b / a) . Nevertheless, even this small difference might subvert fairly reasonable expectations.
For example, if someone queries balanceOfToken and immediately after that feeds the result into redeemToken , they might very well
expect to redeem exactly the given amount and not less; it’s their current balance, after all. However, that’s not always the case
with the current implementation.

Recommendation

Calculate requiredShares based on the formula above (x2). We also recommend dealing in a clean way with the special cases
totalShares == 0 and barSushiBalance == 0 .

3.4 Sushi: balanceOfToken underestimates balance Medium

Description

The balanceOfToken computation is too pessimistic, i.e., it can underestimate the current balance slightly.

code/sushi-pooltogether/contracts/SushiYieldSource.sol:L29-L45

/// @notice Returns the total balance (in asset tokens). This includes the deposits and interest.
/// @return The underlying balance of asset tokens
function balanceOfToken(address addr) public override returns (uint256) {
 if (balances[addr] == 0) return 0;
 ISushiBar bar = ISushiBar(sushiBar);

 uint256 shares = bar.balanceOf(address(this));
 uint256 totalShares = bar.totalSupply();

 uint256 sushiBalance =
 shares.mul(ISushi(sushiAddr).balanceOf(address(sushiBar))).div(
 totalShares
);
 uint256 sourceShares = bar.balanceOf(address(this));

 return (balances[addr].mul(sushiBalance).div(sourceShares));
}

First, it calculates the amount of SUSHI that “belongs to” the yield source contract (sushiBalance), and then it determines the
fraction of that amount that would be owed to the address in question. However, the “belongs to” above is a purely theoretical
concept; it never happens that the yield source contract as a whole redeems and then distributes that amount among its
shareholders; instead, if a shareholder redeems tokens, their request is passed through to the SushiBar . So in reality, there’s no
reason for this two-step process, and the holder’s balance of SUSHI is more accurately computed as
balances[addr].mul(ISushi(sushiAddr).balanceOf(address(sushiBar))).div(totalShares) , which can be greater than what balanceOfToken currently

returns. Note that this is the amount of SUSHI that addr could withdraw directly from the SushiBar , based on their amount of
shares. Observe also that if we sum these numbers up over all holders in the yield source contract, the result is smaller than or
equal to sushiBalance . So the sum still doesn’t exceed what “belongs to” the yield source contract.

Recommendation

The balanceOfToken function should use the formula above.

3.5 Yearn: Redundant approve call Minor

Description

The approval for token transfer is done in the following way:

code/pooltogether-yearnv2-yield-source/contracts/yield-source/YearnV2YieldSource.sol:L167-L170

if(token.allowance(address(this), address(v)) < token.balanceOf(address(this))) {
 token.safeApprove(address(v), 0);
 token.safeApprove(address(v), type(uint256).max);
}

Since the approval will be equal to the maximum value, there’s no need to make zero-value approval �irst.

Recommendation

Change two safeApprove to one regular approve with the maximum value.

3.6 Sushi: Some state variables should be immutable and have more speci�ic types Minor

Description

The state variables sushiBar and sushiAddr are initialized in the contract’s constructor and never changed afterward.

code/sushi-pooltogether/contracts/SushiYieldSource.sol:L12-L21

contract SushiYieldSource is IYieldSource {
 using SafeMath for uint256;
 address public sushiBar;
 address public sushiAddr;
 mapping(address => uint256) public balances;

 constructor(address _sushiBar, address _sushiAddr) public {
 sushiBar = _sushiBar;
 sushiAddr = _sushiAddr;
 }

They should be immutable ; that would save some gas and make it clear that they won’t (and can’t) be changed once the contract
has been deployed.
Moreover, they would better have more speci�ic interface types than address , i.e., ISushiBar for sushiBar and ISushi for sushiAddr .
That would be safer and make the code more readable.

Recommendation

Make these two state variables immutable and change their types as indicated above. Remove the corresponding explicit type
conversions in the rest of the contract, and add explicit conversions to type address where necessary.

3.7 Sushi: Unnecessary balance queries Minor

Description

In function redeemToken , barBalanceDiff is always the same as requiredShares because the SushiBar ’s leave function burns exactly
requiredShares xSUSHI.

code/sushi-pooltogether/contracts/SushiYieldSource.sol:L73-L84

uint256 barBeforeBalance = bar.balanceOf(address(this));
uint256 sushiBeforeBalance = sushi.balanceOf(address(this));

bar.leave(requiredShares);

uint256 barAfterBalance = bar.balanceOf(address(this));
uint256 sushiAfterBalance = sushi.balanceOf(address(this));

uint256 barBalanceDiff = barBeforeBalance.sub(barAfterBalance);
uint256 sushiBalanceDiff = sushiAfterBalance.sub(sushiBeforeBalance);

balances[msg.sender] = balances[msg.sender].sub(barBalanceDiff);

Recommendation

Use requiredShares instead of barBalanceDiff , and remove the unnecessary queries and variables.

3.8 Sushi: Unnecessary function declaration in interface Minor

Description

The ISushiBar interface declares a transfer function.

code/sushi-pooltogether/contracts/ISushiBar.sol:L5-L17

interface ISushiBar {
 function enter(uint256 _amount) external;

 function leave(uint256 _share) external;

 function totalSupply() external view returns (uint256);

 function balanceOf(address account) external view returns (uint256);

 function transfer(address recipient, uint256 amount)
 external
 returns (bool);
}

However, this function is never used, so it could be removed from the interface. Other functions that the SushiBar provides but
are not used (approve , for example) aren’t part of the interface either.

Recommendation

Remove the transfer declaration from the ISushiBar interface.

Appendix 1 - Files in Scope
This audit covered the following �iles:

A.1.1 Sushi Yield Source

File SHA-1 hash

contracts/SushiYieldSource.sol afa8b6083c6956c82ffe3b16c2f67ad86929eb75

contracts/ISushiBar.sol 86e92592551dd788e9936f1383f0920aee0501c8

contracts/ISushi.sol 3e4001370481f4f3fd1b235edca4873e47973647

A.1.2 Yearn V2 Yield Source

File SHA-1 hash

contracts/yield-source/YearnV2YieldSource.sol 33f041474bdf367549f51c6d759e73918ea8ff7c

contracts/yield-source/YearnV2YieldSourceProxyFactory.sol 8a69d3c9d035a15b2d5f751f976f832162eb37c1

Appendix 2 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the
Reports in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Speci�ically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of code and only the code we note as being within the scope of our
review within this report. Any Solidity code itself presents unique and unquanti�iable risks as the Solidity language itself remains
under development and is subject to unknown risks and �laws. The review does not extend to the compiler layer, or any other

https://github.com/pooltogether/sushi-pooltogether/tree/ccaf9d73f8cf5c0c41f6e4d640d9b186c51bc3ce
https://github.com/pooltogether/pooltogether-yearnv2-yield-source/tree/a34857f1555908a6263d2ebd189f0cb40e1858da

Request a Security Review Today
Get in touch with our team to request a quote for a smart contract audit or a 1-day security review.

A U D I T S

B L O G

T O O L S

R E S E A R C H

A B O U T

C O N TA C T

C A R E E R S

P R I VA C Y P O L I C Y

Subscribe to Our Newsletter
Stay up-to-date on our latest offerings, tools,
and the world of blockchain security.

areas beyond speci�ied code that could present security risks. Cryptographic tokens are emergent technologies and carry with
them high levels of technical risk and uncertainty. In some instances, we may perform penetration testing or infrastructure
assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) – on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are not responsible for the content
or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the
use of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or
mean that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

CONTACT US

e-mail address

http://localhost:1313/diligence/audits/
http://localhost:1313/diligence/blog/
http://localhost:1313/diligence/tools/
http://localhost:1313/diligence/research/
http://localhost:1313/diligence/about/
http://localhost:1313/diligence/contact/
https://consensys.net/open-roles/?discipline=32525
http://localhost:1313/diligence/privacy-policy/
https://consensys.net/
http://localhost:1313/diligence/contact/

