
Date May 2020

Lead Auditor Martin Ortner

Co-auditors Alexander Wade

MCDEX Mai Protocol V2 Audit

1 Executive Summary
1.1 Scope

1.2 Activity log

2 Action Items
2.1 Reduce overall complexity

2.2 Increase the overall quality and quantity of testing

2.3 Address codebase fragility

2.4 Improve documentation and create a complete technical specification

2.5 Ensure system states, roles, and permissions are sufficiently restrictive

3 System Overview

4 Security Specification
4.1 Actors

4.2 Trust Model

5 Recommendations
5.1 Refactor PerpetualProxy

5.2 Clarify confusing use of signed integers

5.3 Improve documentation and provide a complete specification

5.4 Use individually typed setter methods instead of a combined set*Prameter method

5.5 LibTypes.Status.SETTLING should be renamed to LibTypes.Status.EMERGENCY

5.6 Implement clear, consistent naming conventions for all contracts

5.7 Prefix variables that are expected to denominated in “wads” to make them distinguishable from
integers

5.8 Introduce a system setup phase and provide sane parameters on deployment

5.9 Import 3rd party libraries from their original source and keep them unchanged instead of copying
their content into a new library

5.10 Consider removing unnecessary events

5.11 Unnecessary ABIEncoderV2 declarations

5.12 Avoid redefining the same structs

5.13 Methods should be declared external

5.14 Gas Optimization static hashed values

6 Issues
6.1 Exchange - CancelOrder has no effect Critical

6.2 AMM - funding can be called in emergency mode Major

6.3 Perpetual - withdraw should only be available in NORMAL state Major

6.4 Perpetual - withdrawFromInsuranceFund should check wadAmount instead of rawAmount
Major

6.5 Perpetual - liquidateFrom should not have public visibility Major

6.6 Unpredictable behavior due to front running or general bad timing Major

6.7 AMM - Governance is able to set an invalid alpha value Medium

6.8 AMM - Amount of collateral spent or shares received may be unpredictable for liquidity provider
Medium

6.9 Exchange - insufficient input validation in matchOrders Medium

6.10 AMM - Liquidity provider may lose up to lotSize when removing liquidity Medium

6.11 Oracle - Unchecked oracle response timestamp and integer over/underflow Medium

6.12 AMM - Liquidity pools can be initialized with zero collateral Medium

6.13 Perpetual - Administrators can put the system into emergency mode indefinitely Medium

6.14 Signed data may be usable cross-chain Medium

6.15 Exchange - validateOrderParam does not check against SUPPORTED_ORDER_VERSION Medium

6.16 LibMathSigned - wpowi returns an invalid result for a negative exponent Medium

6.17 Outdated solidity version and floating pragma Medium

6.18 AMM - ONE_WAD_U is never used Minor

6.19 Perpetual - Variable shadowing in constructor Minor

6.20 Perpetual - The specified decimals for the collateral may not reflect the token’s actual decimals
Minor

6.21 AMM - Unchecked return value in ShareToken.mint Minor

6.22 Perpetual - beginGlobalSettlement can be called multiple times Minor

6.23 Unused Imports Minor

6.24 Exchange - OrderStatus is never used Minor

6.25 LibMath - Inaccurate declaration of _UINT256_MAX Minor

6.26 LibMath - inconsistent assertion text and improve representation of literals with many digits
Minor

6.27 LibMath - roundHalfUp returns unfinished result Minor

6.28 LibMath/LibOrder - unused named return value Minor

6.29 Where possible, a specific contract type should be used rather than address Minor

Appendix 1 - Files in Scope

Appendix 2 - Artifacts
A.2.1 Solidity Code Metrics

A.2.2 MythX

A.2.3 Surya

A.2.4 Tests Suite

Appendix 3 - Disclosure

1 Executive Summary

In May 2020, MCDEX asked us to conduct a security assessment of Mai Protocol V2, an extension of the Monte
Carlo Decentralized Exchange platform (mcdex.io)

We performed this assessment over three calendar weeks: from May 18 to June 05, 2020.

1.1 Scope

Our review focused on the commit hash 4b198083ec4ae2d6851e101fc44ea333eaa3cd92 . A complete list of
files in scope can be found in the Appendix.

1.2 Activity log

During the first week, our efforts were directed towards understanding the Mai Protocol V2 contract system, its
interfaces, and how the various contracts and other entities interact with the system.

A kickoff meeting was held on May 18, 2020, after which a common communication channel was established.
The assessment team used this channel to ask the client questions, as well as to communicate to the client any
security-relevant issues as soon as they were found. The assessment team reviewed the provided documentation
and began exploring the source code.

The assessment team noted to the client that:

Inline code documentation is sparse

The provided documentation was lacking a description about several interfaces and entities in the system

The mcdex.io team provided updates to the documentation during the assessment.

During the end-of-week progress meeting, the assessment team informed the client on the main focal points of
the week and provided preliminary information about issues under investigation. Together with the client, it was
established to set the assessment team’s focus on AMM , Perpetual , and Exchange for the next week.

As the contract system in question was deployed on the mainnet and appeared to be live on the client’s website,
the assessment team reminded the client of the risks associated with making an unaudited system available to
their users on mainnet and noted that the Perpetual contract held about 1300 ETH at the time. The client
accepted this risk and stated that the risk is outlined with a banner on their website, stating:

ATTENTION Audit is undergoing and this is Beta version. Trade at your own risk. The cap of

collateral is $500k for Beta.

During the second week, we continued diving deeper into AMM , Perpetual , and Exchange . To understand
the system and its risks, we produced several ancillary visualizations (that can be seen throughout this report).

A high-level interface and actors diagram was shared with the client, and we requested they examine and verify
that its layout was generally correct. We mainly requested this due to the sparse specification documents
available at that time. The specification documents were updated or newly created during the assessment. The
assessment team notified the client of several gaps and inconsistencies in the specification documents (e.g.,
general principles were not described like FundingLoss/SocialLoss).

https://mcdex.io/
https://github.com/mcdexio/documents
https://etherscan.io/address/0x92c506d3dd51a37650cc8e352a7551c26e2c607d

During the third week, the assessment team focused on reviewing issues raised so far, grouping issues by general
themes and providing recommendations, revisiting the specification flagging any inconsistencies, and preparing
the report for the delivery on Friday.

2 Action Items

2.1 Reduce overall complexity

Complexity comes at the cost of security. Complex systems are harder to understand, harder to test, and harder
to maintain.

For smart contract systems, the fault-intolerant environment of the EVM necessarily demands that security is the
highest priority. Therefore, it should be a design goal of all smart contract systems to reduce complexity and
make logic explicit wherever possible.

Mai V2 is a highly complex system:

The contracts are continuously measuring the difference between the “mark price” of the Perpetual
contract and Chainlink’s ETH/USD index price. The percentage difference between these two values
defines the “funding rate,” which impacts the payouts of short and long positions in the contract.

As explained in the MCDEX docs, the calculation of accumulated funding payment per position is
calculated using a 25-branch statement:

In order to calculate the Acc , consider that the funding rate will cross up to 4 special

boundary values (-GovMarkPremiumLimit , -GovFundingDampener ,

+GovFundingDampener , +GovMarkPremiumLimit). 4 points segment the curve into 5

parts, so that the calculation can be arranged into 5 * 5 = 25 cases. In order to reduce

the amount of calculation, the code is expanded into 25 branches.

This calculation does not translate well into Solidity, requiring some ~200 lines of signed math
operations to express the full range of options. (See AMM.getAccumulatedFunding).

Note, too, that AMM.funding , which can branch into AMM.getAccumulatedFunding , is called
almost every time any of the Mai V2 contracts is interacted with. Many functions call AMM.funding
multiple times. For example, Exchange.matchOrders can call AMM.funding up to 2 + (3 *
makerOrderParams.length) times.

One contract, Perpetual , is split into two deployed instances: Perpetual itself, and
PerpetualProxy , which routes all calls directly to Perpetual (using CALL , not DELEGATECALL).
Perpetual has several functions that are access-restricted via the onlyWhitelisted modifier. Our

understanding of the system is that two contracts should be whitelisted: Exchange and
PerpetualProxy . PerpetualProxy implements its own access-control modifier, onlyAMM . The net

result is that AMM calls Perpetual through PerpetualProxy , the Exchange calls Perpetual
directly, and two separate access control mechanisms must function correctly for this to work as expected.

Throughout the contracts, a common theme is the use of both signed and unsigned math, as well as math
dealing with “wad”-denominated values versus “raw” values. Because variables are not named in a way
that suggests they are either “signed” or “unsigned,” “wad” or “raw,” reading the Mai V2 contracts often
requires a lot of backtracking to variable declarations.

Several inconsistencies in method and variable naming add to the confusion. For example, the modifier
AMM.onlyBroker seems to suggest that the caller should be the “broker.” However, the modifier actually

https://github.com/mcdexio/documents/blob/master/en/internal-amm-funding-rate.md#accumulated-funding-payment
https://github.com/mcdexio/mai-protocol-v2/blob/4b198083ec4ae2d6851e101fc44ea333eaa3cd92/contracts/liquidity/AMM.sol#L609-L781

checks that perpetualProxy.currentBroker(msg.sender) == authorizedBroker() , which is
another way of saying that “ PerpetualProxy needs to be the caller’s broker.”

Recommendation:

Reducing overall complexity is no simple task, and addressing this system’s complexity will require careful
thought and consideration outside of the scope of this review. In general, prioritize the following concepts:

Optimize for readability. Ensure that code is as easy to understand as possible. Implement clear and
consistent naming conventions, group similar functions within the same file, and generally attempt to
structure and organize the code so that humans can read and understand it best.

Reduce function side effects. Rather than include funding (or its Perpetual counterpart,
markPrice) as an implicit call in every function, refactor the code to have each public or external

function call funding only once.

Additionally, calls to funding should be explicit. As an example, consider Perpetual.isSafe .
The name implies that the function is a “getter,” which should make some simple check and return a
value. Instead, isSafe is a state-changing function that can possibly branch into the impossible-to-
follow math of funding : Perpetual.isSafe -> Perpetual.markPrice ->
AMM.currentMarkPrice -> AMM.funding . As a result, even simple concepts like isSafe become
incredibly difficult to understand.

Related:

Recommendations Priority

Implement clear, consistent naming conventions for all contracts High

Clarify confusing use of signed integers High

Refactor PerpetualProxy High

Use individually typed setter methods instead of a combined set*Prameter method Medium

Prefix variables that are expected to denominated in “wads” to make them distinguishable

from integers
Medium

Import 3rd party libraries from their original source and keep them unchanged instead of

copying their content into a new library
Low

Avoid redefining the same structs Low

Methods should be declared external Low

Issues Severity

Perpetual - Variable shadowing in constructor Minor

Where possible, a specific contract type should be used rather than address Minor

2.2 Increase the overall quality and quantity of testing

Several findings of this assessment suggest that Mai V2 is inadequately tested:

Issue 6.1 showed that a critical feature, order cancellation, did not function whatsoever.

The function in question (cancelOrder) seems to behave as expected: an order’s “trader” or
“broker” can call Exchange.cancelOrder , adding the hash of the order in question to the
Exchange.cancelled mapping. However, none of Exchange ’s trading functions check that

submitted orders are in this mapping, so cancelled orders can be processed all the same.

Although 2 unit tests check the behavior of the function in question (cancelOrder), no tests check
whether a “cancelled” order can still be traded in the Exchange . This suggests that more care should
be taken to test behavior across multiple functions, rather than merely testing functions in isolation.

Issue 6.5 describes an incorrectly-set function visibility. The function (liquidateFrom) was marked
public , rather than internal . This oversight allows anyone to force liquidated positions on other users

and attempt liquidations at improper times.

While it would be strange to test whether a function had a correctly-set visibility, the mistake implies
that insufficient consideration has been given to liquidate ’s internal behavior. Proper testing
requires careful consideration of the various branches execution can take and requires a familiarity
with the code that should have spotted this.

Recommendation:

Implementing a robust, complete test suite requires careful consideration outside of the scope of this review. In
general, prioritize the following concepts:

Write tests that encapsulate the specification. Tests should address each of a system’s requirements. A
system’s requirements should be clearly defined within the system design specification. Ensure that the Mai
V2 test suite accurately reflects the most up-to-date specification and includes checks for all of the
requirements mentioned therein.

Perform extensive fuzz-testing on mathematical functions. Mai V2’s monolithic funding rate calculation
(and other formulas) introduce severe dependencies on the mathematical approximations present in
LibMath , the proper use of these approximations, and a staggeringly-wide range of values that can be

assigned to global parameters via admin functions. To ensure these work together under any condition, the
system should be tested using a wide range of invalid, unexpected, or random data.

Related:

Issues Severity

Exchange - CancelOrder has no effect Critical

Perpetual - liquidateFrom should not have public visibility Major

Perpetual - withdrawFromInsuranceFund should check wadAmount instead of rawAmount Major

Perpetual - withdraw should only be available in NORMAL state Major

AMM - funding can be called in emergency mode Major

LibMathSigned - wpowi returns an invalid result for a negative exponent Medium

2.3 Address codebase fragility

Software is considered “fragile” when issues or changes in one part of the system can have side-effects in
conceptually unrelated parts of the codebase. Fragile software tends to break easily and may be challenging to
maintain.

Our assessment uncovered several indicators of software fragility in Mai V2:

Issue 6.8 describes that liquidity providers can never be sure of the result of calls to addLiquidity and
removeLiquidity . The amount of collateral received for burned shares, and the number of shares

received for provided collateral is based on the system’s current price and total shares in circulation. These
values can fluctuate significantly for many reasons:

Oracle price updates may introduce a new price to the system. Significant deviations from expected
values may result in unexpected gains or losses for users.

Frontrunning by other users (whether on purpose or not) will affect the current price and total share
amount.

Adjustments to global variable configuration by the system admin do not come with a delay, so
changes will directly impact users’ subsequent actions.

System configuration by administrators primarily occurs in Perpetual (via inherited
PerpetualGovernance) and AMM (via inherited AMMGovernance). Both configuration features are

accessed through monolithic setGovernanceParameter functions, where an input bytes32 key is
compared against all existing parameter names for a match. If a match is found, the parameter is set to the
input int256 value .

If future development adds or removes configurable parameters, the change will have a broad impact
on the entire configuration system.

int256 value is not a sufficiently-descriptive value for many configurable parameters. Many
parameters must first convert this to a uint via LibMathSigned.toUint256 , which rejects
negative input values. As a result, if a parameter is introduced that requires a high enough uint
value, these functions will not work as the positive values of int256 do not go higher than 2 **
255 - 1 .

By using a multipurpose function like setGovernanceParameter , configurable parameters are not
afforded the type safety checks Solidity would provide if standard, single-purpose setter methods were
used.

Recommendation:

Building an anti-fragile system requires careful thought and consideration outside of the scope of this review. In
general, prioritize the following concepts:

Follow the single-responsibility principle of functions. This principle states that functions should have
responsibility for a single part of the system’s functionality and that their purpose should be narrowly-
aligned with that responsibility. Avoid functions that “do everything” (like setGovernanceParameter),
and avoid functions that touch every other function (like funding and markPrice).

Reduce reliance on external systems. Whether the “external system” refers to the Chainlink oracle or
admin control, the contracts should avoid blindly and immediately consuming and conforming to the

arbitrary inputs of external systems. External systems can introduce significant change at a moment’s
notice: the oracle may wildly impact the index price, and admins may suddenly make large adjustments to
fee rates, lot sizes, premiums, and other critically-important values. When reducing reliance on external
systems, make sure users can interact with the system in a consistent, expected manner.

Related:

Recommendations Priority

Use individually typed setter methods instead of a combined set*Prameter method Medium

Avoid redefining the same structs Low

Issues Severity

Unpredictable behavior due to front running or general bad timing Major

Exchange - validateOrderParam does not check against SUPPORTED_ORDER_VERSION Medium

Signed data may be usable cross-chain Medium

Oracle - Unchecked oracle response timestamp and integer over/underflow Medium

AMM - Liquidity provider may lose up to lotSize when removing liquidity Medium

Exchange - insufficient input validation in matchOrders Medium

AMM - Amount of collateral spent or shares received may be unpredictable for liquidity

provider
Medium

AMM - Unchecked return value in ShareToken.mint Minor

2.4 Improve documentation and create a complete technical specification

A system’s design specification and supporting documentation should be almost as important as the system’s
implementation itself.

Security assessments depend on a complete technical specification to understand how a system is supposed to

function. When a behavior is not specified (or is specified incorrectly), security assessments must base their
knowledge in assumptions, leading to less effective review.

Maintaining and updating code relies on proper supporting documentation to know why the system is

implemented in a specific way. If code maintainers cannot reference documentation, they must rely on memory
or assistance to make high-quality changes.

Our assessment notes several problems with Mai V2 documentation:

Inline commenting is sparse to non-existent.

Provided documentation lacks a description of some interfaces and entities in the system.

Some documentation is out-of-date and refers to outdated concepts and terms.

Related:

Recommendations Priority

Improve documentation and provide a complete specification High

LibTypes.Status.SETTLING should be renamed to LibTypes.Status.EMERGENCY Medium

Issues Severity

Unpredictable behavior due to front running or general bad timing Major

2.5 Ensure system states, roles, and permissions are sufficiently restrictive

Smart contract code should strive to be strict. Strict code behaves predictably, is easier to maintain, and
increases a system’s ability to handle nonideal conditions.

Our assessment of the Mai V2 protocol found that many of its states, roles, and permissions are loosely defined:

Mai V2’s administrator role assigns complete control over most elements of the protocol to a single
account. This control includes setting individual account balances, draining the system’s insurance fund,
changing system addresses and permissions, and more (See Actors for a more detailed description).

The extent to which administrator permissions can impact the contracts suggests that future plans to
transition the administrator role to a DAO model have not been well thought through. In its current
configuration, it would be incredibly difficult to transition the management of the administrator’s
extensive permissions to a smart contract.

If the administrator key is compromised, an attacker will have complete and instant access to the
underlying assets held within the contracts.

If the administrator key is somehow destroyed or lost, the contracts will be unable to enter the global
“EMERGENCY” mode.

Both AMM and Perpetual make use of OpenZeppelin’s WhitelistedRole module, which includes
two roles: “Whitelisted” and “WhitelistAdmin.” In AMM , the Whitelisted role is assumed to be the
Exchange contract only. In Perpetual , the Whitelisted role is assumed to be both PerpetualProxy

and Exchange . As described in “Refactor PerpetualProxy ,” the use of WhitelistedRole in
Perpetual has significant downsides:

From the perspective of a user or external reviewer, it is much harder to determine which entities
should be able to perform which actions.

Because PerpetualProxy and Exchange are both Whitelisted, they have equivalent permissions
in Perpetual . If vulnerabilities are discovered in either contract that allow arbitrary calls to
Perpetual , the Whitelisted role’s permissions will allow the Exchange to act like
PerpetualProxy , and vice versa. Additionally, the method
WhitelistedRole.renounceWhitelisted would enable such a vulnerability to completely break

large portions of the system.

Future updates to the system may introduce additional contracts to the Whitelisted role. It may be
challenging to ensure that new contracts do not introduce vulnerabilities due to their Whitelisted

permission. Additionally, if old contracts are no longer used, the Whitelisted role necessitates that the
WhitelistAdmin remember to remove their permissions.

Mai V2 has three primary states: NORMAL , SETTLING (aka EMERGENCY), and SETTLED .

Issue 6.13 describes that there is no restriction on the duration of the SETTLING stage. Once
activated, the admin can choose whether the stage lasts minutes, days, or years.

Issue 6.22 describes that the SETTLING stage can be entered multiple times before the SETTLED
stage is reached. In effect, this allows the system settlementPrice to be set multiple times, making
it difficult for users to count on any specific outcome for the liquidation process.

Some functions can be called during improper contract states, as described in issue 6.2 and issue 6.3.

Recommendation:

Follow the Principle of Least Privilege. Ensure that each role within the system is given only the bare
minimum permissions to perform their responsibilities.

Document the use of administrator permissions. For users to know what they can expect from Mai V2,
the administrator’s roles and responsibilities should be clearly and completely documented and
communicated.

Monitor the usage of administrator permissions. To ensure the administrator key’s potential compromise
is detected, monitor transactions and events in Mai V2 for administrator action.

Related:

Recommendations Priority

Refactor PerpetualProxy High

Issues Severity

AMM - funding can be called in emergency mode Major

Perpetual - withdraw should only be available in NORMAL state Major

Perpetual - liquidateFrom should not have public visibility Major

Unpredictable behavior due to front running or general bad timing Major

Perpetual - Administrators can put the system into emergency mode indefinitely Medium

Perpetual - beginGlobalSettlement can be called multiple times Minor

3 System Overview

The mcdex.io Mai Protocol V2 aims to create decentralized Perpetual contracts on the Ethereum blockchain.
Users can either trade with the on-chain automated market maker (AMM) or the off-chain order book
(Exchange). The system accepts ETH or any ERC20 compliant token (with at max. 18 decimals) as collateral.

The system under review (documentation) consists of the following components, with the main parts being the
Exchange , AMM , and Perpetual . It is initially deployed in NORMAL operating mode and can be set to
EMERGENCY or SETTLED state by an administrative account at any time.

Exchange

Provides interfaces for off-chain order book trading. Brokers can match signed orders from traders. A taker can
only match with either Exchange or AMM.

Exchange

• LibMathSigned for int256

• LibMathUnsigned for uint256

• LibOrder for LibOrder.OrderParam

• LibSignature for LibSignature.OrderSignature

uint256 SUPPORTED_ORDER_VERSION

bytes32=>uint256 filled

bytes32=>bool cancelled

matchOrders()

fillOrder()

matchOrderWithAMM()

• validatePrice()

• validateOrderParam()

claimTradingFee()

cancelOrder()

claimDevFee()

claimTakerDevFee()

claimMakerDevFee()

LibMathSigned LibMathUnsigned LibOrder LibSignature

for int256 for uint256 for LibOrder.OrderParam for LibSignature.OrderSignature

Exchange.sol

Perpetual

Holds assets owned by users and provides interfaces to manipulate balance and position. One perpetual contract
is serving one trading pair. Traders have to deposit collateral in ETH or the configured ERC20 token before
interacting with the Exchange or AMM . Balances are only updated in the margin accounts when executing
trades. Collateral token/ ETH transfers are only executed when withdrawing or depositing funds. The collateral
token or ETH is specified when deploying the token and cannot be changed. Special care should be taken when
deploying a token with zero decimals as its calculations might be subject to rounding errors.

Perpetual is the main contract of the system that - for example - specifies the current AMM , GlobalConfig
addresses being used as well as allows an administrator to put the contract into emergency mode.

https://github.com/mcdexio/documents/tree/b688f79bb670ab0c869b31d49fa45f2bb8562ac9/en
http://localhost:1313/audits/private/nxaosool-mcdexio-mai-protocol-v2/imgs/exchange.svg

Perpetual

Brokerage

Position

• LibMathSigned for int256

• LibMathUnsigned for uint256

• LibOrder for LibTypes.Side

• SafeERC20 for IERC20

uint256 totalAccounts

address accountList

address=>bool accountCreated

__constructor__()

setCashBalance()

• __fallback__()

markPrice()

setBroker()

setBrokerFor()

depositToAccount()

depositFor()

• depositEtherFor()

deposit()

• depositEther()

depositAndSetBroker()

• depositEtherAndSetBroker()

applyForWithdrawal()

settleFor()

settle()

endGlobalSettlement()

withdrawFromAccount()

withdrawFor()

withdraw()

depositToInsuranceFund()

• depositEtherToInsuranceFund()

withdrawFromInsuranceFund()

positionMargin()

maintenanceMargin()

marginBalance()

pnl()

availableMargin()

drawableBalance()

isSafe()

isSafeWithPrice()

isBankrupt()

isIMSafe()

isIMSafeWithPrice()

liquidateFrom()

liquidate()

tradePosition()

transferCashBalance()

Brokerage

• LibMathUnsigned for uint256

address=>LibTypes.Broker brokers

setBroker()

• currentBroker()

• getBroker()

Position

Collateral

PerpetualGovernance

• LibMathSigned for int256

• LibMathUnsigned for uint256

• LibTypes for LibTypes.Side

int256 insuranceFundBalance

uint256 totalSizes

address=>LibTypes.PositionAccount positions

__constructor__()

• socialLossPerContract()

• totalSize()

• getPosition()

calculateLiquidateAmount()

addSocialLossPerContract()

marginBalanceWithPrice()

availableMarginWithPrice()

• marginWithPrice()

• maintenanceMarginWithPrice()

drawableBalanceWithPrice()

pnlWithPrice()

increaseTotalSize()

decreaseTotalSize()

• socialLoss()

• socialLossWithAmount()

fundingLoss()

fundingLossWithAmount()

remargin()

calculatePnl()

open()

close()

trade()

handleSocialLoss()

liquidate()

LibMathSignedLibMathUnsigned

LibOrder

SafeERC20

Collateral

• LibMathSigned for int256

• LibMathUnsigned for uint256

• SafeERC20 for IERC20

uint256 MAX_DECIMALS

int256 scaler

address collateral

address=>LibTypes.CollateralAccount cashBalances

__constructor__()

• getCashBalance()

• isTokenizedCollateral()

deposit()

applyForWithdrawal()

_withdraw()

withdraw()

depositToProtocol()

withdrawFromProtocol()

withdrawAll()

updateBalance()

ensurePositiveBalance()

transferBalance()

• toWad()

• toCollateral()

PerpetualGovernance

WhitelistedRole

• LibMathSigned for int256

• LibMathUnsigned for uint256

IGlobalConfig globalConfig

IAMM amm

address devAddress

LibTypes.Status status

uint256 settlementPrice

LibTypes.PerpGovernanceConfig governance

int256 socialLossPerContracts

• getGovernance()

setGovernanceParameter()

setGovernanceAddress()

beginGlobalSettlement()

LibTypes

WhitelistedRole

WhitelistAdminRole

• Roles for Roles.Role

Roles.Role _whitelisteds

• isWhitelisted()

addWhitelisted()

removeWhitelisted()

renounceWhitelisted()

_addWhitelisted()

_removeWhitelisted()

Roles

add()

remove()

• has()

WhitelistAdminRole

• Roles for Roles.Role

Roles.Role _whitelistAdmins

__constructor__()

• isWhitelistAdmin()

addWhitelistAdmin()

renounceWhitelistAdmin()

_addWhitelistAdmin()

_removeWhitelistAdmin()

for int256for uint256

for LibTypes.Side

for IERC20

for uint256 for int256for uint256

for LibTypes.Side

for int256for uint256 for IERC20for int256for uint256

for Roles.Role

for Roles.Role

Perpetual.sol

AMM

The automated market maker provides functionality for trading, funding rate calculation, and liquidity
management that burns and mints ShareToken that represent a liquidity providers’ share of the pool.

Perpetual defines the current AMM contract address that is being used and, therefore, Perpetual can
upgrade to a new AMM by setting a new AMM contract address.

http://localhost:1313/audits/private/nxaosool-mcdexio-mai-protocol-v2/imgs/perpetual.svg

AMM

AMMGovernance

• LibMathSigned for int256

• LibMathUnsigned for uint256

uint256 ONE_WAD_U

int256 ONE_WAD_S

ShareToken shareToken

IPerpetualProxy perpetualProxy

IPriceFeeder priceFeeder

LibTypes.FundingState fundingState

__constructor__()

• authorizedBroker()

• shareTokenAddress()

• indexPrice()

• positionSize()

• lastFundingState()

• lastAvailableMargin()

• lastFairPrice()

• lastPremium()

• lastEMAPremium()

• lastMarkPrice()

• lastPremiumRate()

• lastFundingRate()

currentFundingState()

currentAvailableMargin()

currentFairPrice()

currentPremium()

currentMarkPrice()

currentPremiumRate()

currentFundingRate()

currentAccumulatedFundingPerContract()

createPool()

getBuyPrice()

buyFrom()

buyFromWhitelisted()

buy()

getSellPrice()

sellFrom()

sellFromWhitelisted()

sell()

addLiquidity()

removeLiquidity()

settleShare()

depositAndBuy()

• depositEtherAndBuy()

depositAndSell()

• depositEtherAndSell()

buyAndWithdraw()

sellAndWithdraw()

depositAndAddLiquidity()

• depositEtherAndAddLiquidity()

updateIndex()

initFunding()

funding()

• getBlockTimestamp()

currentXY()

• availableMarginFromPoolAccount()

• fairPriceFromPoolAccount()

• premiumFromPoolAccount()

mustSafe()

mintShareTokenTo()

burnShareTokenFrom()

forceFunding()

nextStateWithTimespan()

• timeOnFundingCurve()

• integrateOnFundingCurve()

• getAccumulatedFunding()

AMMGovernance

WhitelistedRole

http://localhost:1313/audits/private/nxaosool-mcdexio-mai-protocol-v2/imgs/amm.svg

WhitelistedRole

• LibMathSigned for int256

• LibMathUnsigned for uint256

LibTypes.AMMGovernanceConfig governance

int256 emaAlpha2

int256 emaAlpha2Ln

setGovernanceParameter()

• getGovernance()

LibMathSigned LibMathUnsigned

WhitelistedRole

WhitelistAdminRole

• Roles for Roles.Role

Roles.Role _whitelisteds

• isWhitelisted()

addWhitelisted()

removeWhitelisted()

renounceWhitelisted()

_addWhitelisted()

_removeWhitelisted()

Roles

add()

remove()

• has()

WhitelistAdminRole

• Roles for Roles.Role

Roles.Role _whitelistAdmins

__constructor__()

• isWhitelistAdmin()

addWhitelistAdmin()

renounceWhitelistAdmin()

_addWhitelistAdmin()

_removeWhitelistAdmin()

for int256 for uint256

for int256 for uint256

for Roles.Role

for Roles.Role

AMM.sol

Global Config

Stores global system parameters. Currently only used to store and set the block delay for withdrawal and
broker updates.

http://localhost:1313/audits/private/nxaosool-mcdexio-mai-protocol-v2/imgs/amm.svg

Roles

add()

remove()

• has()

WhitelistAdminRole

• Roles for Roles.Role

Roles.Role _whitelistAdmins

__constructor__()

• isWhitelistAdmin()

addWhitelistAdmin()

renounceWhitelistAdmin()

_addWhitelistAdmin()

_removeWhitelistAdmin()

WhitelistedRole

WhitelistAdminRole

• Roles for Roles.Role

Roles.Role _whitelisteds

• isWhitelisted()

addWhitelisted()

removeWhitelisted()

renounceWhitelisted()

_addWhitelisted()

_removeWhitelisted()

GlobalConfig

WhitelistedRole

uint256 withdrawalLockBlockCount

uint256 brokerLockBlockCount

__constructor__()

setGlobalParameter()

for Roles.Role

for Roles.Role

GlobalConfig.sol

Perpetual Proxy

This contract is a workaround to be able to upgrade the AMM and ensure it has a constant address.

http://localhost:1313/audits/private/nxaosool-mcdexio-mai-protocol-v2/imgs/global.svg

PerpetualProxy

• LibTypes for LibTypes.Side

IPerpetual perpetual

__constructor__()

• self()

• status()

• devAddress()

markPrice()

• settlementPrice()

• currentBroker()

availableMargin()

• getPoolAccount()

• cashBalance()

• positionSize()

• positionSide()

• positionEntryValue()

• positionEntrySocialLoss()

• positionEntryFundingLoss()

• socialLossPerContract()

transferBalanceIn()

transferBalanceOut()

transferBalanceTo()

trade()

setBrokerFor()

depositFor()

• erforerFor()

withdrawFor()

isSafe()

isSafeWithPrice()

isProxySafe()

isProxySafeWithPrice()

isIMSafe()

isIMSafeWithPrice()

• lotSize()

• tradingLotSize()

LibTypes

for LibTypes.Side

PerpetualProxy.sol

Contract Reader

An auxiliary contract to read state and data from the system. This contract is not used by any other contract in
the system.

ContractReader

• getGovParams()

• getPerpetualStorage()

• getAccountStorage()

ContractReader.sol

ERC20 Token (Customized): ShareToken

A customized ERC20 token initially owned by the deployer that allows MinterRole to burn and mint
tokens. The ShareToken is minted to liquidity providers according to their share of the pool.

http://localhost:1313/audits/private/nxaosool-mcdexio-mai-protocol-v2/imgs/perpetualproxy.svg
http://localhost:1313/audits/private/nxaosool-mcdexio-mai-protocol-v2/imgs/contractreader.svg

IERC20

• totalSupply()

• balanceOf()

transfer()

• allowance()

approve()

transferFrom()

SafeMath

• add()

• sub()

• mul()

• div()

• mod()

ERC20

IERC20

• SafeMath for uint256

address=>uint256 _balances

address=>mapping address=>uint256 _allowances

uint256 _totalSupply

• totalSupply()

• balanceOf()

transfer()

• allowance()

approve()

transferFrom()

increaseAllowance()

decreaseAllowance()

_transfer()

_mint()

_burn()

_approve()

_burnFrom()

Roles

add()

remove()

• has()

MinterRole

• Roles for Roles.Role

Roles.Role _minters

__constructor__()

• isMinter()

addMinter()

renounceMinter()

_addMinter()

_removeMinter()

ERC20Mintable

ERC20

MinterRole

mint()

ShareToken

ERC20Mintable

uint256 decimals

string name

string symbol

__constructor__()

burn()

for uint256 for Roles.Role

ShareToken.sol

ERC20 Token (Standard): Collateral

An ERC20 standard token following the @openzeppelin/contracts/token/ERC20/IERC20.sol interface
description used as collateral for the perpetual contract.

http://localhost:1313/audits/private/nxaosool-mcdexio-mai-protocol-v2/imgs/sharetoken.svg

Oracle (External): Reversed/-ChainlinkAdapter

Chainlink oracle adapter used by AMM to retrieve the index price.

ChainlinkAdapter

• LibMathSigned for int256

IChainlinkFeeder feeder

int256 chainlinkDecimalsAdapter

__constructor__()

• price()

LibMathSigned

InversedChainlinkAdapter

• LibMathSigned for int256

int256 ONE

IChainlinkFeeder feeder

int256 chainlinkDecimalsAdapter

__constructor__()

• price()

for int256 for int256

ChainlinkAdapter.sol and InverseChainlinkAdapter.sol

http://localhost:1313/audits/private/nxaosool-mcdexio-mai-protocol-v2/imgs/chainlinkadapter.svg

4 Security Specification

This section describes, from a security perspective, the expected behavior of the system under review. It is not
a substitute for documentation. The purpose of this section is to outline trust relationships and describe specific
security properties that were identified by the assessment team.

The contract system can be in one of three states:

NORMAL (default)

SETTLING hereby also referred to as EMERGENCY mode

SETTLED

Contract System Actors, Interfaces and Access Control

4.1 Actors

Actors are listed below with a general description of their role in the system followed by more details on their
respective abilities for specific components:

deployer
deploys a contract in the system

http://localhost:1313/audits/private/nxaosool-mcdexio-mai-protocol-v2/imgs/tm_mcdexio_v2.svg

may take the role of an administrator

administrator
may change system or global parameters

may switch-out components (upgrading)

may put the contract into EMERGENCY or SETTLED mode

may perform the global settlement in case the contract is put into EMERGENCY mode

may choose to keep the system in EMERGENCY mode without settling

may manipulate balances of users in EMERGENCY mode

may withdraw from the insurance fund at any time

may hold special permissions in system tokens (Sharetoken : mint , burn)

trader
must first deposit collateral

signs orders for the off-chain Exchange

delegates to a broker for matching off-chain orders with Exchange

delegates to a broker for the on-chain AMM

broker
set by a trader

matches orders on behalf of the trader

oracle
an external ChainLink price feed

oracle answers must be trusted by the system

price slippage may occur

oracle may fail to provide recent prices or there may be a gap to the real price (DoS, targeted attacks,
exploited trust to oracle owner)

oracle may provide wrong prices

oracle may cease to exist

liquidity provider
provides liquidity in the form of collateral to the AMM

Gets ShareToken minted in return

ShareToken Holder
an account with a non-zero balance of ShareToken aka. an active liquidity provider

Collateral Token Holder
an account with a non-zero balance of the configured collateral token (ERC20 or ETH)

anyone
any other account on the blockchain may interact with the contract system without taking a specific
role

4.2 Trust Model

Exchange

owner: none, standalone contract

Tracks filled and canceled orders

Verifies order signatures.

Defines allowed signed order version

Typically called by a trader’s broker

Caller provides the address of the perpetual contract used when matching
Exchange retrieves system parameters (e.g. lotsize) and performs trades

Order signature includes perpetual’s address, trader, broker, and trading data

Actors

anyone
can see canceled/filled orders

trader
submits order to off-line order book

must set broker for trades

can specify positive or negative fee’s (either broker or trader pays)

can cancel orders

broker
main actor for the contract. matches orders on behalf of traders

orders can only be matched if msg.sender is set as broker for affected orders

trader can also be broker

can cancel orders

Perpetual

owner: deployer , administrator

accepts ETH

explicitly rejects ETH via fallback function

governed by one or more administrators with initial administrator being the deployer

defines critical perpetual parameters that immediately affect all users
the address of the AMM

the address of GlobalConfig

the system status (e.g. NORMAL , EMERGENCY , SETTLED)

the settlement price

margin rate, liquidation penalty, fee rates, lot sizes, socia loss

uses openzeppelin WhitelistedRole

only minimal initial configuration is enforced in the constructor (globalConfig), there is a risk that variables
might stay uninitialized and therefore operating out of specification

users must verify configuration before interacting with the system
administrators can set parameters or “switch-out” components (AMM) at any time (admin front-

running opportunity)

administrators might add more administrators

Actors

deployer
is administrator

deploying address (individual) may choose not to renounce the administrative role

administrator
can change perpetual parameters at any time (front-running opportunity)

can “switch-out” AMM and GlobalConfig at any time (front-running opportunity)

can add other WhitelistAdmin ’s

can renounce administrator role

can add more whitelisted addresses (typically PerpetualProxy and Exchange)

may choose to front-run own or other transactions changing perpetual system parameters

can withdraw from insurance fund at any time

can put contract into EMERGENCY mode at any time

may choose to stay in EMERGENCY mode indefinitely

may put contract into EMERGENCY mode even when in EMERGENCY mode

can manipulate cash balances of any account in EMERGENCY mode

can set social loss

account holder (trader , broker)
can apply for withdrawal (delayed by configurable amount of blocks)

can withdraw from account (when not in EMERGENCY mode)

can change their own broker

liquidate their own account

can call settle after EMERGENCY mode has ended

whitelisted (typically perpetual proxy for AMM or Exchange directly)
can do anything anyone can

can trade positions for any account

can transfer cash balances for any account

can withdraw for any account (when in NORMAL mode)

can deposit for any account

can set broker for any account

anyone
can deposit to open an account

can set their own broker

liquidate any account (see issue)

can mark price

deposit to insurance fund

check if an account is safe

read account information

AMM

owner: deployer , administrator

accepts ETH and forwards it to PerpetualProxy which in turn forwards it to Perpetual

governed by one or more administrators with initial administrator being the deployer

defines critical AMM parameters that immediately affect all users
mathematical factors (funding dampener)

premium size and limits

fee rates

reads configuration from perpetual via perpetualProxy

uses openzeppelin WhitelistedRole

only minimal initial configuration is enforced in the constructor (perpetual proxy, pricefeed, and
ShareToken address)

there is a risk that variables might stay uninitialized and therefore operating out of specification

perpetual proxy, pricefeed, and ShareToken address cannot be changed

users must verify configuration before interacting with the system
administrators can set parameters at any time (admin front-running opportunity)

administrators might add more administrators

trading operations are only allowed in NORMAL state

Actors

deployer
is administrator

deploying address (individual) may choose not to renounce administrative role

administrator
can change AMM parameters at any time (front-running opportunity)

can add other WhitelistAdmin ’s

can renounce administrator role

can add more whitelisted addresses (typically Exchange)

may choose to front-run own or other transactions changing AMM system parameters

account holder (trader)
can deposit collateral

can withdraw collateral

can implicitly set their broker to PerpetualProxy when using compound functions like
depositAndBuy

trader with broker set to PerpetualProxy
can buy/sell

can create a pool (only one pool)

can add liquidity to pool (only if pool has been created)

can buy/sell

liquidity provider is a trader with broker set to PerpetualProxy
remove liquidity

settleShare after EMERGENCY mode has ended

whitelisted (typically Exchange)
can sell from any account

can buy for any account

anyone
can deposit to open an account (which also sets broker to PerpetualProxy)

update the index price

read current contract information

GlobalConfig

owner: deployer , administrator

governed by one or more administrators with initial administrator being the deployer

defines critical global parameters

uses openzeppelin WhitelistedRole but only makes use of WhitelistAdmin
may consider using Ownable instead

can set withdrawalLockBlockCount and brokerLockBlockCount to arbitrary values
can disable the block delays completely due to missing input validation

values are initially set to zero which is unsafe

initial configuration is not enforced in the constructor, there is a risk that variables might stay uninitialized
and therefore operating out of specification

users must verify configuration before interacting with the system
administrators can set parameters at any time (admin front-running opportunity)

Actors

deployer
is administrator

deploying address (individual) may choose not to renounce administrative role

administrator
can change global parameters at any time (front-running opportunity)

can add other WhitelistAdmin ’s

can renounce administrator role

may choose to front-run own or other transactions changing global system parameters

anyone
can read the settings

PerpetualProxy

owner: none, standalone contract

serves as constant account address of AMM to perpetual

does not store state by itself

retrieves AMM address from perpetual configuration

restricts most access to AMM address

Actors

deployer
provides address of Perpetual on deployment (cannot be changed)

AMM configured in Perpetual
can transfer balances

can trade

can set broker for any accounts

can deposit for any account

can withdraw for any account

anyone
can mark price if AMM is set in Perpetual

can read contract information like availableMargin

can check if account is safe

ContractReader

owner: none, standalone contract

view only, does not store any state

external interface, not used by any other contract in the system

caller to method provides address to Perpetual

Actors

anyone
can interface with the contract to read GovParams, PerpetualStorage, and AccountStorage

ShareToken (Custom ERC20 Token)

owner: deployer , minter (administrator)

minter role is in full control of the token

there can be multiple minter accounts

Actors

deployer
is minter (administrator)

deploying address (individual) may choose not to renounce administrative role

minter (administrator)
can mint an arbitrary amount of tokens to any address

can burn an arbitrary amount of tokens without the holders approval

can nominate other minter ’s

can renounce own minter role

cannot renounce other minter ’s role

ShareToken Holder
can interact with the token interface in accordance with the ERC20 specification (transfer)

can transfer token to an account that is unknown to the AMM

anyone
can interact with the token interface in accordance with the ERC20 specification

Collateral (Standard ERC20 Token)

external ERC20 Token

external token must be audited before accepting it as collateral for the system

external token might be broken (wrong interfaces, implementation)

external token might call back into Perpetual directly (re-entrancy)

external token might implement callbacks and allow affected accounts (from , to addresses) to re-enter
Perpetual before and after token transfers (beware of ERC777) (re-entrancy)

external token is configured when deploying Perpetual . Make sure token decimals of the token reflect
the decimals configured when deploying Perpetual .

Actors

ShareToken Holder
can interact with the token interface in accordance with the ERC20 specification

can provide token as liquidity to AMM to be liquidity provider

anyone
can interact with the token interface in accordance with the ERC20 specification

Oracle (*ChainlinkAdapter)

owner: none, standalone contract

used by AMM to fetch the index price

Users must understand the inherent risks of oracles

Actors

anyone
can retrieve price information from the oracle

5 Recommendations

5.1 Refactor PerpetualProxy

Description

PerpetualProxy is a forwarding contract that mirrors the Perpetual interface and provides a few wrappers
for Perpetual functions. While the inclusion of the word Proxy implies that PerpetualProxy is a
standard delegatecall proxy, its operations all use call . This means that Perpetual holds the state used
by PerpetualProxy , with PerpetualProxy ’s only state being a single address pointing to Perpetual .

While there is evidence within MCDEX’s docs that PerpetualProxy originally held additional state, this is no
longer the case. However, PerpetualProxy does still implement additional access-control logic that may be a
holdover from a previous version. Namely, it includes the onlyAMM modifier, which restricts function call
access to the AMM contract. Because PerpetualProxy does not hold state, this modifier must query
Perpetual :

code/contracts/proxy/PerpetualProxy.sol:L13-L18

IPerpetual perpetual;

modifier onlyAMM() {
 require(msg.sender == address(perpetual.amm()), "invalid caller");
 _;
}

Note that PerpetualProxy is not an abstract calldata forwarder; it does not include a fallback function that
forwards msg.data to Perpetual . Rather, each of the functions PerpetualProxy needs to call are a part
of its own interface. Many of these functions are restricted to the amm contract, by use of the onlyAMM
modifier:

code/contracts/proxy/PerpetualProxy.sol:L110-L124

function setBrokerFor(address guy, address broker) public onlyAMM {
 perpetual.setBrokerFor(guy, broker);
}

function depositFor(address guy, uint256 amount) public onlyAMM {
 perpetual.depositFor(guy, amount);
}

function depositEtherFor(address guy) public payable onlyAMM {
 perpetual.depositEtherFor.value(msg.value)(guy);
}

function withdrawFor(address payable guy, uint256 amount) public onlyAMM {
 perpetual.withdrawFor(guy, amount);
}

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/28
https://github.com/mcdexio/documents/blob/84ddfa77e2bb25db7366b01fc0133cd66122c675/en/perpetual-architecture.md#perpetualproxysol

Of course, Perpetual and PerpetualProxy do not share state, and Perpetual ’s functions can be called
directly. This separation of logic and state has resulted in two separate access control implementations: the
onlyAMM modifier in PerpetualProxy , and an onlyWhitelisted modifier in Perpetual . In order to

successfully restrict a function’s access to the AMM contract only, both modifiers must be employed:

PerpetualProxy ensures the caller is the AMM contract via onlyAMM , then forwards the call to
Perpetual :

code/contracts/proxy/PerpetualProxy.sol:L110-L112

function setBrokerFor(address guy, address broker) public onlyAMM {
 perpetual.setBrokerFor(guy, broker);
}

Perpetual then needs to check that the caller (PerpetualProxy) is whitelisted via
onlyWhitelisted :

code/contracts/perpetual/Perpetual.sol:L64-L66

function setBrokerFor(address guy, address broker) public onlyWhitelisted {
 setBroker(guy, broker, globalConfig.brokerLockBlockCount());
}

The onlyWhitelisted modifier, which is pulled from OpenZeppelin’s WhitelistedRole contract, allows
multiple whitelisted addresses. In the case of Perpetual , PerpetualProxy is not the only whitelisted
address: the Exchange contract is also whitelisted. Additionally, the whitelist admin role in OpenZeppelin’s
WhitelistAdminRole contract allows additional whitelisted addresses to be added, each of which would have

the same permissions as Exchange and PerpetualProxy .

Conclusion

The two-contract system is complicated, which is compounded by the use of the whitelist access control system.
Technically, Exchange has the same access to Perpetual as the AMM contract, and vice-versa. Should
issues be found or introduced in either Exchange or AMM that allow for arbitrary external calls, several
components of the system may break or be tampered with. Further additions to the list of whitelisted addresses
or whitelisted admins may have similar consequences.

Recommendation

Remove PerpetualProxy entirely, as it no longer serves a purpose

Implement the onlyAMM modifier within Perpetual , and replace onlyWhitelisted in Perpetual
with onlyAMM where applicable

Remove onlyWhitelisted in Perpetual , and implement an onlyExchange modifier where
applicable

Review system roles and permissions, and ensure that each contract is only given the minimum level of
access needed to function effectively

5.2 Clarify confusing use of signed integers

Description

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/40

One factor that significantly introduces complexity to the smart contract system is the excessive use of signed
integers for convenience and to encode implicit logic.

In practice, this degrades code readability, auditability, and security as it breaks assumptions humans might have
formed based on the variable’s use or name.

Examples

variables declared as signed int that must not be negative: e.g., insuranceFundBalance

The variable is declared as a signed integer. However, the value of the insurance fund should never be allowed to
be negative. In fact, it cannot be negative unless someone withdraws more funds than available. Since it is a
signed integer it can theoretically be negative (permanently or for a short amount of time potentially during
reentrant calls). To counter that, special care must be taken and explicit checks are added while simply falling
back to declaring the variable uint would have avoided the necessity of adding more complexity.

code/contracts/perpetual/Position.sol:L15-L15

int256 public insuranceFundBalance;

code/contracts/perpetual/Perpetual.sol:L192-L202

function depositEtherToInsuranceFund() public payable {
 require(!isTokenizedCollateral(), "ether not acceptable");
 require(msg.value > 0, "invalid amount");

 int256 wadAmount = depositToProtocol(msg.sender, msg.value);
 insuranceFundBalance = insuranceFundBalance.add(wadAmount);

 require(insuranceFundBalance >= 0, "negtive insurance fund");

 emit UpdateInsuranceFund(insuranceFundBalance);
}

multiple declarations of the same const for different signedness

code/contracts/liquidity/AMM.sol:L17-L18

uint256 private constant ONE_WAD_U = 10**18;
int256 private constant ONE_WAD_S = 10**18;

implicit logic based on the signedness of an integer: fee

If the fee is positive, the amount is sent from guy -> devAddress . If the fee is negative, the amount is
sent from devAddress -> guy .

Let alone, that this mechanism shifts responsibility to verify the sanity of system and order parameters to the
entity matching orders (usually the broker) as the signed integer order fee rate defines if the broker or the trader
pays fees.

code/contracts/exchange/Exchange.sol:L200-L212

int256 hard = price.wmul(openedAmount).toInt256().wmul(feeRate);
int256 soft = price.wmul(closedAmount).toInt256().wmul(feeRate);
int256 fee = hard.add(soft);
address devAddress = perpetual.devAddress();
if (fee > 0) {
 int256 available = perpetual.availableMargin(guy);
 require(available >= hard, "dev margin");
 fee = fee.min(available);
 perpetual.transferCashBalance(guy, devAddress, fee.toUint256());
} else if (fee < 0) {
 perpetual.transferCashBalance(devAddress, guy, fee.neg().toUint256());
 require(perpetual.isSafe(devAddress), "dev unsafe");
}

code/contracts/exchange/Exchange.sol:L93-L95

// trading fee
int256 takerTradingFee =
amount.wmul(price).toInt256().wmul(takerOrderParam.takerFeeRate());
claimTradingFee(perpetual, takerOrderParam.trader, takerTradingFee);

transferBalance can never be called with a negative value but wadAmount is signed int.

code/contracts/perpetual/Collateral.sol:L140-L144

function transferBalance(address from, address to, int256 wadAmount) internal {
 if (wadAmount == 0) {
 return;
 }
 require(wadAmount > 0, "bug: invalid transfer amount");

that’s also why explicit conversions to int256 are required:

code/contracts/perpetual/Perpetual.sol:L313-L316

function transferCashBalance(address from, address to, uint256 amount) public
onlyWhitelisted {
 require(status != LibTypes.Status.SETTLING, "wrong perpetual status");
 transferBalance(from, to, amount.toInt256());
}

Recommendation

Rework the smart contract system design and declare signed integers only where they are absolutely needed.
Refrain from declaring signed integers out of convenience when used with arithmetical operations. Refrain from
encoding logic - like the direction of funds flow - into the signedness of the value and make it explicit instead.

Clearly explain why variables are signed and reflect the type of arguments and statevars used in the method’s
docstring. The more explicit the code is and the less complex it is, the easier it is to verify security assumptions.

5.3 Improve documentation and provide a complete specification

Description

Mai V2 lacks inline code documentation describing the purpose and relationships of source-units, their
contracts, methods, and variables. Additionally, supporting documentation is frequently out-of-date, and many
interfaces, roles, states, and permissions are missing entirely.

Recommendation

Rather than duplicating function description in external documentation, provide inline documentation using
Solidity’s natspec format, as this will be easier to maintain.

Provide supporting inline comments for critical functionality:

Outline why certain values are used and what purpose they serve.

Describe acceptable ranges for inputs, outputs, and intermediary calculations.

Elaborate on security concerns for critical methods and make your developers or external reviewers
aware of any functions that require special attention due to their risk profile in the system.

Improve, update, and complete the Mai V2 specification:

Ensure it is up-to-date at all times and implement the logic as specified without any deviations (e.g.
deviation between Solidity math implementation and specification pseudocode).

Include a security discussion in the specification and inform users, developers, and reviewers of the
risks attached to the system or components that require special attention.

Examples

The following non-exhaustive list provides an overview of various inconsistencies encountered during review.
We highly recommend reviewing all documentation for accuracy and completeness as additional issues are
likely to exist.

Inconsistent, unclear or insufficient explanation

Perpetual Wrong state requirements that have since been corrected

mcdexio/documents@ f5c1bd7

Perpetual Wrong state requirement NORMAL for withdraw while the code checks for !SETTLING
which resolves to NORMAL and SETTLED

https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-
interfaces.md

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/10
https://solidity.readthedocs.io/en/develop/natspec-format.html
https://github.com/mcdexio/documents/commit/f5c1bd7dc7c20c2d37e91b826bd3c59f25c43041#diff-14b74954c5261076d0e808ee50a5b00e
https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-interfaces.md

Perpetual inaccurate function signature

totalSize(Side side) should be totalSize(LibTypes.Side side) (and multiple other occurrences).
Keep the function signature and types as accurately updated with the codebase.

https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-
interfaces.md

AMM internal specification inconsistencies

Missing sources for mathematical calculations

Most of the Variable and Method names do not reflect actual names in code: GovPoolFeeRate ,
PoolAvailableMargin , and others.

createPool does not mention that it can only be called once otherwise initFunding bails

createPool does not mention the state requirement NORMAL

buyFromPool does not exist and should be buyFrom . It is also missing the state requirement
NORMAL .

buyFromPool inconsistent requirement BlockTime < DeadLine which actually is
require(getBlockTimestamp() <= deadline, "deadline exceeded"); in code.

buyFromPool does not specify a minimum amount.

buyFromPool states The trader buy/long. Can be called by anyone. while it can only be
called if the caller set the broker to perpetualProxy (which is mentioned as a confusing
requirement broker == LiquidityPool).

buyFromPool does not mention the lotsize

sellFromPool similar inconsistencies to buyFromPool

AddLiquidity does not mention he state NORMAL as a requirement.

AddLiquidity unclear statement The unit of "Amount" is contract.

RemoveLiqudity does not mention that up to a lotsize of balance might be lost

UpdateIndex does not mention that the caller might be awarded a premium

funding states isEmergency as a requirement which is not state.

funding does not check the state requirement and can be called at any time.

funding steps are inconsistent with the code. E.g. when lastFundingTime==0
forceFunding() just returns and does not set the LastFundingTime to BlockTime .

funding duplicate definition and deviating specification of formulas (even though they are the
same): v0 = LastEMAPremium; vt = (LastEMAPremium - LastPremium) *
Pow(GovEMAAlpha2, n) + LastPremium vs. - v0 = LastEMAPremium; vt = (LastEMAPremium
- LastPremium) * Pow(1 - GovEMAAlpha, n) + LastPremium (here)

https://github.com/mcdexio/documents/blob/b94b98a806d29d7ce135e1011b094868e07eeb5d/en/internal-
amm.md#createpoolamount

depositToInsuranceFund unclear who would deposit to an insurance fund that can be drained by
admins at any time.

LibTypes.Side should add a description for when and how FLAT is used.

https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-
interfaces.md

https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-interfaces.md
https://github.com/mcdexio/documents/blob/b94b98a806d29d7ce135e1011b094868e07eeb5d/en/internal-amm-funding-rate.md
https://github.com/mcdexio/documents/blob/b94b98a806d29d7ce135e1011b094868e07eeb5d/en/internal-amm.md#createpoolamount
https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-interfaces.md

Exchange vague requirement for amounts array

Length of parameter ‘amounts’ should equal to the length of ‘makerOrderParams’.

https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-
interfaces.md

Perpetual admin functionality vague state requirements

Perpetual.beginGlobalSettlement: Enter the “Emergency” status with a “settlement price”. In this

status, all trades and withdrawals will be disabled until “endGlobalSettlement”

Unclear specification. SETTLING is referred to as EMERGENCY mode but it is not mentioned here. Stick to one
distinct state description and use it throughout the specification and in code.

Perpetual.setCashBalance: Modify account.cashBalance. Can only be called in the “global

settlement” status

Inconsistent and unclear use of state name global settlement . This should state that this method can only
be used in EMERGENCY or SETTLING mode. Stick to one name and use it throughout the specification and in
code.

Perpetual.endGlobalSettlement: Enter the “global settlement” status. In this status, all traders can

withdraw their MarginBalance

Unclear what state is being entered right now. This should state that SETTLED mode is entered.

Perpetual.withdrawFromInsuranceFund: Withdraw collateral from insurance fund. Typically

happen in the “global settlement” status

Vague description of when this is allowed to be used when it basically can be called by an admin at any time as
there is no state requirement.

https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-
admin-functions.md

Unclear if it is by design that parameters can be changed by an admin at any time (including upgrading the
system)

https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-
admin-functions.md

GlobalConfig specification does not mention that there can be multiple admins, admins can add other
admins, and whitelist accounts. Whitelisted accounts are not used with this contract.

https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-
admin-functions.md

Contracts that provide admin functionality should clearly state who is assigned admin powers initially
(deployed), whether the deployed keeps its admin role or renounces it, what other accounts get roles
assigned (admin and whitelisted) to allow uses to audit a specific setup of the system. Note that processes
need to be in place to manage privileged accounts (e.g. remove admins when they are compromised,
remove privileges when they are no longer used or components are being upgraded)

https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-interfaces.md
https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-admin-functions.md
https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-admin-functions.md
https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-admin-functions.md

https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-
admin-functions.md

AMM describe the liquidity provider user journey.

Create pool must be called first and can only be called once. A pool cannot be created for an empty amount. A
pool must exist for others to provide liquidity. A pool is not created automatically if none exists. Liquidity
providers cannot provide zero amount.

The function descriptions should outline the requirements to call these methods more clearly. E.g. buy, sell,
addLiquidity, removeLiquidity can only be called if the caller set the broker to PerpetualProxy .

Clearly define and explain the operating values and boundaries for configuration parameters

https://github.com/mcdexio/documents/blob/b94b98a806d29d7ce135e1011b094868e07eeb5d/en/internal-
amm.md#governance

Perpetual outlines three states Normal , Emergency and GlobalSettled but the implementation
refers to these states as Normal , Settling and Settled .

https://github.com/mcdexio/documents/blob/b94b98a806d29d7ce135e1011b094868e07eeb5d/en/internal-
perpetual.md

Perpetual methods state requirement isEmergency==FALSE while the implementation checks
status==NORMAL .

https://github.com/mcdexio/documents/blob/b94b98a806d29d7ce135e1011b094868e07eeb5d/en/internal-
perpetual.md

Perpetual implements no method buy / sell (AMM does)

https://github.com/mcdexio/documents/blob/b94b98a806d29d7ce135e1011b094868e07eeb5d/en/internal-
perpetual.md

Perpetual.liquidate does not state that method can only be called in status.NORMAL or
status.SETTLING

https://github.com/mcdexio/documents/blob/b94b98a806d29d7ce135e1011b094868e07eeb5d/en/internal-
perpetual.md

Initially Missing but since then updated

A description for socialLoss and fundingLoss was not present and was added towards the 2nd half
of the audit.

mcdexio/documents@ 9859727

https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-admin-functions.md
https://github.com/mcdexio/documents/blob/b94b98a806d29d7ce135e1011b094868e07eeb5d/en/internal-amm.md#governance
https://github.com/mcdexio/documents/blob/b94b98a806d29d7ce135e1011b094868e07eeb5d/en/internal-perpetual.md
https://github.com/mcdexio/documents/blob/b94b98a806d29d7ce135e1011b094868e07eeb5d/en/internal-perpetual.md
https://github.com/mcdexio/documents/blob/b94b98a806d29d7ce135e1011b094868e07eeb5d/en/internal-perpetual.md
https://github.com/mcdexio/documents/blob/b94b98a806d29d7ce135e1011b094868e07eeb5d/en/internal-perpetual.md
https://github.com/mcdexio/documents/commit/9859727748b703b0d7a74428c5bec121be7417ed#diff-27df3933d67fb3ac0172e36d2abb3ba3

5.4 Use individually typed setter methods instead of a combined set*Prameter
method

Description

Combined setter methods degrade readability and code maintainability and are prone to errors, especially when
one setter method is used to store different types of values.

Examples

GlobalConfig

code/contracts/global/GlobalConfig.sol:L18-L27

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/15

function setGlobalParameter(bytes32 key, uint256 value) public onlyWhitelistAdmin {
 if (key == "withdrawalLockBlockCount") {
 withdrawalLockBlockCount = value;
 } else if (key == "brokerLockBlockCount") {
 brokerLockBlockCount = value;
 } else {
 revert("key not exists");
 }
 emit UpdateGlobalParameter(key, value);
}

AMMGovernance

code/contracts/liquidity/AMMGovernance.sol:L22-L42

function setGovernanceParameter(bytes32 key, int256 value) public onlyWhitelistAdmin
{
 if (key == "poolFeeRate") {
 governance.poolFeeRate = value.toUint256();
 } else if (key == "poolDevFeeRate") {
 governance.poolDevFeeRate = value.toUint256();
 } else if (key == "emaAlpha") {
 require(value > 0, "alpha should be > 0");
 governance.emaAlpha = value;
 emaAlpha2 = 10**18 - governance.emaAlpha;
 emaAlpha2Ln = emaAlpha2.wln();
 } else if (key == "updatePremiumPrize") {
 governance.updatePremiumPrize = value.toUint256();
 } else if (key == "markPremiumLimit") {
 governance.markPremiumLimit = value;
 } else if (key == "fundingDampener") {
 governance.fundingDampener = value;
 } else {
 revert("key not exists");
 }
 emit UpdateGovernanceParameter(key, value);
}

Recommendation

Implement individual setter methods for different values, especially when setting different value types.

With the current architecture multiple calls to set*Parameter are needed to initialize the contract. Consider
adding a constructor or method that allows to initially set all the value with one call to save gas.

5.5 LibTypes.Status.SETTLING should be renamed to
LibTypes.Status.EMERGENCY

Description

Consider renaming LibTypes.Status.SETTLING to LibTypes.Status.EMERGENCY to accurately reflect
what it is being used for. The status names currently do not match the status mentioned in the specification.

code/contracts/reader/ContractReader.sol:L59-L60

params.isEmergency = perpetual.status() == LibTypes.Status.SETTLING;
params.isGlobalSettled = perpetual.status() == LibTypes.Status.SETTLED;

5.6 Implement clear, consistent naming conventions for all contracts

Description

The Mai V2 contracts do not adhere to consistent naming conventions. Because of the intricate mathematical
operations and accounting inherent to the protocol, this has resulted in a significant increase in code complexity.

Addressing the underlying problem will require careful thought and consideration. Generally, the goal should be
to make the contracts as readable as possible. The following list of recommendations should serve as a basis for
more a more clear, consistent naming scheme within the Mai V2 contracts:

Recommendation

Signed and unsigned variables should be distinguished: uint uVarName vs int iVarName

Wad-denominated values should be distinguished: uint wadVarName vs uint rawVarName

Signed and unsigned math libraries should have different names for the operations they support:
uVarName.add(...) vs iVarName.iAdd(...)

internal and private functions should be distinguished: function _helperMethod() internal;

Functions that change state should never be prefixed with “get”.

For example: AMM.getBuyPrice and AMM.getSellPrice

Many functions act as a wrapper for calls to either AMM.funding or Perpetual.markPrice (which
calls AMM.funding eventually). This makes it very difficult to determine where state changes occur in the

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/19
https://github.com/mcdexio/documents/blob/e9ee837793c827241d85fdd6f3c5eb7842b840ba/en/internal-perpetual.md#functions-and-motivation
https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/42

contracts. Instead of using wrapper functions, ensure that each call to funding is explicit.

For example, avoid using methods like AMM.currentFairPrice , which calls funding() (a state
changing function) then lastFairPrice() (a view getter).

5.7 Prefix variables that are expected to denominated in “wads” to make them
distinguishable from integers

Description

The contract system mixes raw values with values denominated in wads. Reading the code, it is not always
immediately clear if a method requires or processes a wad value, or a raw value.

It is therefore recommended to prefix/suffix variables with their respective or expected type to increase code
readability and maintainability and reduce the risk of variables being used in the wrong numerical context.

As one example, it is not immediately clear from calling the method wpow that x is a wad value, and n is a
raw value. By renaming x to x_wad , its context would be much more visible.

code/contracts/lib/LibMath.sol:L103-L116

// x ^ n
// NOTE: n is a normal integer, do not shift 18 decimals
// solium-disable-next-line security/no-assign-params

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/5

function wpowi(int256 x, int256 n) internal pure returns (int256 z) {
 z = n % 2 != 0 ? x : _WAD;

 for (n /= 2; n != 0; n /= 2) {
 x = wmul(x, x);

 if (n % 2 != 0) {
 z = wmul(z, x);
 }
 }
}

5.8 Introduce a system setup phase and provide sane parameters on deployment

Description

According to the specification, the contract system can be in one of three states:

Normal (default)

Emergency

GlobalSettled .

By default, after deployment, the system is in state Normal indicating normal operation even though the
contract may not yet be fully set up for use as none of the governance settings are initialized. Uninitialized
settings can lead to the system being operated in an unspecified setting and may cause all sorts of issues and
side-effects.

For example, PerpetualGovernance is part of Perpetual . It allows a whitelisted admin to set critical
system parameters like the initialMarginRate or lotSize which is not allowed to be zero. However, right
after deployment it is uninitialized and is, therefore, going to return a zero value which is not within

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/41
https://github.com/mcdexio/documents/blob/e9ee837793c827241d85fdd6f3c5eb7842b840ba/en/internal-perpetual.md#functions-and-motivation

specification. Since an admin is actively required to set critical parameters on a one-by-one basis it may happen
that initialiMarginRate is never set and stays at a zero rate. This is just an example and should be easily
detectable if the required processes are in place but it should be noted that there is no requirement to initialize
the system with a sane configuration before it is set to Normal state.

code/contracts/perpetual/PerpetualGovernance.sol:L41-L44

governance.initialMarginRate = value.toUint256();
require(governance.initialMarginRate > 0, "require im > 0");
require(governance.initialMarginRate < 10**18, "require im < 1");
require(governance.maintenanceMarginRate < governance.initialMarginRate, "require mm
< im");

The general recommendation for reasonably complex systems that require parameterization before they can be
set to normal operation mode is to

provide sane (according to the specification) default values as part of the deployment process when
executing the contract’s constructor .

introduce a one-way Setup phase. Make this the first phase that is active by default when deploying the
contract (e.g. the first phase in the enum). Provide an interface for others to poll the status of the system to
indicate that the system is not yet ready for normal use. In many cases it can make sense to disable certain
functionality or pause the complete contract during the setup phase to reject any unwanted user interaction
and minimize the risk of losses. Configure and parameterize the system as needed, perform testing to verify
that it is set up according to the system deployment plan, and safely transfer it to Normal state indicating
that it is now safe for use by others.

do not allow to configure critical system parameters while the contract is actively being used as this can
introduce unforeseeable side-effect.

5.9 Import 3rd party libraries from their original source and keep them unchanged
instead of copying their content into a new library

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/3

Description

LibMath.sol provides two libraries LibMathSigned and LibMathUnsigned . The source unit does not
contain any hints or references to the original source from where the code was taken from.

Make sure to use only security audited versions of third-party libraries with your codebase. If possible declare
third-party libraries with the project’s dependencies instead of copying them into your project or copying
methods into new libraries. Copies of general-purpose libraries or methods may easily get outdated and often
end up not being updated. This might leave the project vulnerable to security issues that are fixed in the
upstream version already. Add comments for code that was taken else-where and install a process that checks
3rd party dependencies for security updates.

LibMath.sol contains source code from:

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SignedSafeMath.sol

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/SafeCast.sol

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/Math.sol

5.10 Consider removing unnecessary events

Description

Consider removing unnecessary events like the one in GlobalConfig that just indicates that the contract has been
deployed.

code/contracts/global/GlobalConfig.sol:L14-L16

constructor() public {
 emit CreateGlobalConfig();
}

5.11 Unnecessary ABIEncoderV2 declarations

Description

It should be noted that ABIEncoderV2 is an experimental feature in Solidity 0.5.x . With 0.6.0 the
ABIEncoderV2 is not considered experimental anymore (see solidity changelog). However, even the more

recent versions of solidity list bug-fixes for the encoder and it should, therefore, be tested very thoroughly with
the contract system.

To improve readability it is recommended to only specify ABIEncoderV2 for source units that actually make
use of it. For example, the following files unnecessarily declare the feature:

code/contracts/lib/LibSignature.sol:L2-L2

pragma experimental ABIEncoderV2; // to enable structure-type parameter

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SignedSafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/SafeCast.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/Math.sol
https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/17
https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/22
https://github.com/ethereum/solidity/releases/tag/v0.6.0
https://github.com/ethereum/solidity/releases/tag/v0.6.8

code/contracts/lib/LibTypes.sol:L2-L2

pragma experimental ABIEncoderV2; // to enable structure-type parameter

5.12 Avoid redefining the same structs

Description

Multiple definitions of types can be difficult to maintain and lead to security issues if the type is undergoing
changes but change is not made for all definitions. Defining the same struct should, therefore, be avoided.
Import the type from the respective source (e.g. LibTypes).

code/contracts/lib/LibSignature.sol:L4-L11

library LibSignature {
 enum SignatureMethod {ETH_SIGN, EIP712}

 struct OrderSignature {
 bytes32 config;
 bytes32 r;
 bytes32 s;
 }

code/contracts/lib/LibEIP712.sol:L3-L10

library LibEIP712 {
 string internal constant DOMAIN_NAME = "Mai Protocol";

 struct OrderSignature {
 bytes32 config;
 bytes32 r;

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/23

 bytes32 s;
 }

5.13 Methods should be declared external

Description

Review function attributes of functions that are never called from the current contract. These methods can be
declared as external instead of public in order to safe gas and make the reader aware, that the method is
only called by an external entity.

For example, public methods in contractReader , PerpetualProxy , GlobalConfig , Exchange ,
Governance functionality in Perpetual , AMM and other exposed API in the contract system may be declared
external .

5.14 Gas Optimization static hashed values

Description

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/43
https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/20

Pre-compute static hashed values that are known at compile-time to save some gas and add a comment
describing the hashed value.

code/contracts/lib/LibEIP712.sol:L15-L16

bytes32 private constant EIP712_DOMAIN_TYPEHASH =
keccak256(abi.encodePacked("EIP712Domain(string name)"));

6 Issues

Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best practices or readability.
Code maintainers should use their own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities. These should be addressed unless
there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly exploitable or may require certain
conditions in order to be exploited. All major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be fixed.

6.1 Exchange - CancelOrder has no effect Critical

Description

The exchange provides means for the trader or broker to cancel the order. The cancelOrder method,
however, only stores the hash of the canceled order in mapping but the mapping is never checked. It is therefore
effectively impossible for a trader to cancel an order.

Examples

code/contracts/exchange/Exchange.sol:L179-L187

function cancelOrder(LibOrder.Order memory order) public {
 require(msg.sender == order.trader || msg.sender == order.broker, "invalid
caller");

 bytes32 orderHash = order.getOrderHash();
 cancelled[orderHash] = true;

 emit Cancel(orderHash);
}

Recommendation

matchOrders* or validateOrderParam should check if cancelled[orderHash] == true and
abort fulfilling the order.

Verify the order params (Signature) before accepting it as canceled.

6.2 AMM - funding can be called in emergency mode Major

Description

The specification for AMM.funding() states isEmergency==FALSE as a requirement. However, the state
isEmergency does not exist (we assume EMERGENCY aka. SETTLING) and the implementation does not

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/11
https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/46
https://github.com/mcdexio/documents/blob/b94b98a806d29d7ce135e1011b094868e07eeb5d/en/internal-amm.md#funding

perform any state checks. This method is called by many other functions in AMM .

Recommendation

According to the specification, forceFunding should not be allowed in EMERGENCY mode. However, it is
assumed that this method should only be callable in NORMAL mode.

The assessment team would like to note that the specification appears to be inconsistent and dated (method
names, variable names, …).

6.3 Perpetual - withdraw should only be available in NORMAL state Major

Description

According to the specification withdraw can only be called in NORMAL state. However, the implementation
allows it to be called in NORMAL and SETTLED mode.

Examples

Withdraw only checks for !SETTLING state which resolves to NORMAL and SETTLED .

code/contracts/perpetual/Perpetual.sol:L175-L178

function withdraw(uint256 amount) public {
 withdrawFromAccount(msg.sender, amount);
}

code/contracts/perpetual/Perpetual.sol:L156-L169

function withdrawFromAccount(address payable guy, uint256 amount) private {
 require(guy != address(0), "invalid guy");
 require(status != LibTypes.Status.SETTLING, "wrong perpetual status");

 uint256 currentMarkPrice = markPrice();
 require(isSafeWithPrice(guy, currentMarkPrice), "unsafe before withdraw");
 remargin(guy, currentMarkPrice);
 address broker = currentBroker(guy);
 bool forced = broker == address(amm.perpetualProxy()) || broker == address(0);
 withdraw(guy, amount, forced);

 require(isSafeWithPrice(guy, currentMarkPrice), "unsafe after withdraw");
 require(availableMarginWithPrice(guy, currentMarkPrice) >= 0, "withdraw margin");
}

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/44
https://github.com/mcdexio/documents/blob/0a44d7ec48e09e2d229a3c5b77501235d4de82b3/en/perpetual-interfaces.md

In contrast, withdrawFor requires the state to be NORMAL :

code/contracts/perpetual/Perpetual.sol:L171-L174

function withdrawFor(address payable guy, uint256 amount) public onlyWhitelisted {
 require(status == LibTypes.Status.NORMAL, "wrong perpetual status");
 withdrawFromAccount(guy, amount);
}

Recommendation

withdraw should only be available in the NORMAL operation mode.

6.4 Perpetual - withdrawFromInsuranceFund should check wadAmount instead of
rawAmount Major

Description

withdrawFromInsurance checks that enough funds are in the insurance fund before allowing withdrawal by
an admin by checking the provided rawAmount <= insuranceFundBalance.toUint256() . rawAmount is
the ETH (18 digit precision) or collateral token amount (can be less than 18 digit precision) to be withdrawn
while insuranceFundBalance is a WAD-denominated value (18 digit precision).

The check does not hold if the configured collateral has different precision and may have unwanted
consequences, e.g. the withdrawal of more funds than expected.

Note: there is another check for insuranceFundBalance staying positive after the potential external call to
collateral.

Examples

code/contracts/perpetual/Perpetual.sol:L204-L216

function withdrawFromInsuranceFund(uint256 rawAmount) public onlyWhitelistAdmin {
 require(rawAmount > 0, "invalid amount");
 require(insuranceFundBalance > 0, "insufficient funds");
 require(rawAmount <= insuranceFundBalance.toUint256(), "insufficient funds");

 int256 wadAmount = toWad(rawAmount);
 insuranceFundBalance = insuranceFundBalance.sub(wadAmount);
 withdrawFromProtocol(msg.sender, rawAmount);

 require(insuranceFundBalance >= 0, "negtive insurance fund");

 emit UpdateInsuranceFund(insuranceFundBalance);
}

When looking at the test-cases there seems to be a misconception about what unit of amount
withdrawFromInsuranceFund is taking. For example, the insurance fund withdrawal and deposit are not

tested for collateral that specifies a precision that is not 18. The test-cases falsely assume that the input to
withdrawFromInsuranceFund is a WAD value, while it is taking the collateral’s rawAmount which is then

converted to a WAD number.

code/test/test_perpetual.js:L471-L473

await perpetual.withdrawFromInsuranceFund(toWad(10.111));
fund = await perpetual.insuranceFundBalance();
assert.equal(fund.toString(), 0);

Recommendation

Check that require(wadAmount <= insuranceFundBalance.toUint256(), "insufficient funds"); ,
add a test-suite testing the insurance fund with collaterals with different precision and update existing tests that

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/38

properly provide the expected input to withdraFromInsurance .

6.5 Perpetual - liquidateFrom should not have public visibility Major

Description

Perpetual.liquidate is used to liquidate an account that is “unsafe,” determined by the relative sizes of
marginBalanceWithPrice and maintenanceMarginWithPrice :

code/contracts/perpetual/Perpetual.sol:L248-L253

// safe for liquidation
function isSafeWithPrice(address guy, uint256 currentMarkPrice) public returns (bool)
{
 return
 marginBalanceWithPrice(guy, currentMarkPrice) >=
 maintenanceMarginWithPrice(guy, currentMarkPrice).toInt256();
}

Perpetual.liquidate allows the caller to assume the liquidated account’s position, as well as a small
amount of “penalty collateral.” The steps to liquidate are, roughly:

1. Close the liquidated account’s position

2. Perform a trade on the liquidated assets with the liquidator acting as counter-party

3. Grant the liquidator a portion of the liquidated assets as a reward. An additional portion is added to the
insurance fund.

4. Handle any losses

We found several issues in Perpetual.liquidate :

Examples

liquidateFrom has public visibility:

code/contracts/perpetual/Perpetual.sol:L270

function liquidateFrom(address from, address guy, uint256 maxAmount) public returns
(uint256, uint256) {

Given that liquidate only calls liquidateFrom after checking the current contract’s status, this oversight
allows anyone to call liquidateFrom during the SETTLED stage:

code/contracts/perpetual/Perpetual.sol:L291-L294

function liquidate(address guy, uint256 maxAmount) public returns (uint256, uint256)
{
 require(status != LibTypes.Status.SETTLED, "wrong perpetual status");

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/36

 return liquidateFrom(msg.sender, guy, maxAmount);
}

Additionally, directly calling liquidateFrom allows anyone to liquidate on behalf of other users, forcing
other accounts to assume liquidated positions.

Finally, neither liquidate nor liquidateFrom check that the liquidated account and liquidator are the
same. Though the liquidation accounting process is hard to follow, we believe this is unintended and could lead
to large errors in internal contract accounting.

Recommendation

Make liquidateFrom an internal function

In liquidate or liquidateFrom , check that msg.sender != guy

6.6 Unpredictable behavior due to front running or general bad timing Major

Description

In a number of cases, administrators of contracts can update or upgrade things in the system without warning.
This has the potential to violate a security goal of the system.

Specifically, privileged roles could use front running to make malicious changes just ahead of incoming
transactions, or purely accidental negative effects could occur due to unfortunate timing of changes.

Some instances of this are more important than others, but in general users of the system should have assurances
about the behavior of the action they’re about to take.

Examples

The deployer of the PerpetualGovernance , AMMGovernance , and GlobalConfig contracts are set as
administrators for the contracts through WhitelistedRole . The WhitelistedAdminRole can whitelist other
accounts at any time and allow them to perform actions protected by the onlyWhitelisted decorator.

Updating governance and global configuration parameters are not protected by a time-lock and take effect
immediately. This, therefore, creates an opportunity for administrators to front-run users on the exchange by
changing parameters for orders. It may also allow an administrator to temporarily lift restrictions for themselves
(e.g. withdrawalLockBlockCount).

GlobalConfig
withdrawalLockBlockCount is queried when applying for withdrawal. This value can be set zero

enabling allowing immediate withdrawal.

brokerLockBlockCount is queried when setting a new broker. This value can e set to zero
effectively enabling immediate broker changes.

code/contracts/global/GlobalConfig.sol:L18-L27

function setGlobalParameter(bytes32 key, uint256 value) public onlyWhitelistAdmin {
 if (key == "withdrawalLockBlockCount") {
 withdrawalLockBlockCount = value;
 } else if (key == "brokerLockBlockCount") {
 brokerLockBlockCount = value;
 } else {
 revert("key not exists");

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/16

 }
 emit UpdateGlobalParameter(key, value);
}

PerpetualGovernance
e.g. Admin can front-run specific matchOrder calls and set arbitrary dev fees or curve parameters…

code/contracts/perpetual/PerpetualGovernance.sol:L39-L80

function setGovernanceParameter(bytes32 key, int256 value) public onlyWhitelistAdmin
{
 if (key == "initialMarginRate") {
 governance.initialMarginRate = value.toUint256();
 require(governance.initialMarginRate > 0, "require im > 0");
 require(governance.initialMarginRate < 10**18, "require im < 1");
 require(governance.maintenanceMarginRate < governance.initialMarginRate,
"require mm < im");
 } else if (key == "maintenanceMarginRate") {
 governance.maintenanceMarginRate = value.toUint256();
 require(governance.maintenanceMarginRate > 0, "require mm > 0");
 require(governance.maintenanceMarginRate < governance.initialMarginRate,
"require mm < im");
 require(governance.liquidationPenaltyRate < governance.maintenanceMarginRate,
"require lpr < mm");
 require(governance.penaltyFundRate < governance.maintenanceMarginRate,
"require pfr < mm");
 } else if (key == "liquidationPenaltyRate") {
 governance.liquidationPenaltyRate = value.toUint256();
 require(governance.liquidationPenaltyRate < governance.maintenanceMarginRate,
"require lpr < mm");
 } else if (key == "penaltyFundRate") {
 governance.penaltyFundRate = value.toUint256();
 require(governance.penaltyFundRate < governance.maintenanceMarginRate,
"require pfr < mm");
 } else if (key == "takerDevFeeRate") {
 governance.takerDevFeeRate = value;
 } else if (key == "makerDevFeeRate") {
 governance.makerDevFeeRate = value;
 } else if (key == "lotSize") {
 require(
 governance.tradingLotSize == 0 ||
governance.tradingLotSize.mod(value.toUint256()) == 0,
 "require tls % ls == 0"
);
 governance.lotSize = value.toUint256();
 } else if (key == "tradingLotSize") {
 require(governance.lotSize == 0 || value.toUint256().mod(governance.lotSize)
== 0, "require tls % ls == 0");
 governance.tradingLotSize = value.toUint256();
 } else if (key == "longSocialLossPerContracts") {
 require(status == LibTypes.Status.SETTLING, "wrong perpetual status");

 socialLossPerContracts[uint256(LibTypes.Side.LONG)] = value;
 } else if (key == "shortSocialLossPerContracts") {
 require(status == LibTypes.Status.SETTLING, "wrong perpetual status");
 socialLossPerContracts[uint256(LibTypes.Side.SHORT)] = value;
 } else {
 revert("key not exists");
 }
 emit UpdateGovernanceParameter(key, value);
}

Admin can set devAddress or even update to a new amm and globalConfig

code/contracts/perpetual/PerpetualGovernance.sol:L82-L94

function setGovernanceAddress(bytes32 key, address value) public onlyWhitelistAdmin {
 require(value != address(0x0), "invalid address");
 if (key == "dev") {
 devAddress = value;
 } else if (key == "amm") {
 amm = IAMM(value);
 } else if (key == "globalConfig") {
 globalConfig = IGlobalConfig(value);
 } else {
 revert("key not exists");
 }
 emit UpdateGovernanceAddress(key, value);
}

AMMGovernance

code/contracts/liquidity/AMMGovernance.sol:L22-L43

function setGovernanceParameter(bytes32 key, int256 value) public onlyWhitelistAdmin
{
 if (key == "poolFeeRate") {
 governance.poolFeeRate = value.toUint256();
 } else if (key == "poolDevFeeRate") {
 governance.poolDevFeeRate = value.toUint256();
 } else if (key == "emaAlpha") {
 require(value > 0, "alpha should be > 0");
 governance.emaAlpha = value;
 emaAlpha2 = 10**18 - governance.emaAlpha;
 emaAlpha2Ln = emaAlpha2.wln();
 } else if (key == "updatePremiumPrize") {
 governance.updatePremiumPrize = value.toUint256();
 } else if (key == "markPremiumLimit") {
 governance.markPremiumLimit = value;
 } else if (key == "fundingDampener") {
 governance.fundingDampener = value;
 } else {

 revert("key not exists");
 }
 emit UpdateGovernanceParameter(key, value);
}

Recommendation

The underlying issue is that users of the system can’t be sure what the behavior of a function call will be, and
this is because the behavior can change at any time.

We recommend giving the user advance notice of changes with a time lock. For example, make all updates to
system parameters or upgrades require two steps with a mandatory time window between them. The first step
merely broadcasts to users that a particular change is coming, and the second step commits that change after a
suitable waiting period.

Additionally, users should verify the whitelist setup before using the contract system and monitor it for new
additions to the whitelist. Documentation should clearly outline what roles are owned by whom to support
suitability. Sane parameter bounds should be enforced (e.g. min. disallow block delay of zero)

6.7 AMM - Governance is able to set an invalid alpha value Medium

Description

According to https://en.wikipedia.org/wiki/Moving_average

The coefficient α represents the degree of weighting decrease, a constant smoothing factor between

0 and 1. A higher α discounts older observations faster.

However, the code does not check upper bounds. An admin may, therefore, set an invalid alpha that puts
emaAlpha2 out of bounds or negative.

Examples

code/contracts/liquidity/AMMGovernance.sol:L27-L31

} else if (key == "emaAlpha") {
 require(value > 0, "alpha should be > 0");
 governance.emaAlpha = value;
 emaAlpha2 = 10**18 - governance.emaAlpha;
 emaAlpha2Ln = emaAlpha2.wln();

Recommendation

Ensure that the system configuration is always within safe bounds. Document expected system variable types
and their safe operating ranges. Enforce that bounds are checked every time a value is set. Enforce safe defaults
when deploying contracts.

Ensure emaAlpha is 0 < value < 1 WAD

6.8 AMM - Amount of collateral spent or shares received may be unpredictable for
liquidity provider Medium

Description

When providing liquidity with addLiquidity() , the amount of collateral required is based on the current
price and the amount of shares received depends on the total amount of shares in circulation. This price can
fluctuate at a moment’s notice, making the behavior of the function unpredictable for the user.

The same is true when removing liquidity via removeLiquidity() .

Recommendation

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/45
https://en.wikipedia.org/wiki/Moving_average
https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/34

Unpredictability can be introduced by someone front-running the transaction, or simply by poor timing. For
example, adjustments to global variable configuration by the system admin will directly impact subsequent
actions by the user. In order to ensure users know what to expect:

Allow the caller to specify a price limit or maximum amount of collateral to be spent

Allow the caller to specify the minimum amount of shares expected to be received

6.9 Exchange - insufficient input validation in matchOrders Medium

Description

matchOrders does not check that that the sender has provided the same number of amounts as
makerOrderParams . When fewer amounts exist than makerOrderParams , the method will revert because

of an out-of-bounds array access. When fewer makerOrderParams exist than amounts , the method will
succeed, and the additional values in amounts will be ignored.

Additionally, the method allows the sender to provide no makerOrderParams at all, resulting in no state
changes.

matchOrders also does not reject trades with an amount set to zero. Such orders should be rejected because
they do not comply with the minimum tradingLotSize configured for the system. As a side-effect, events
may be emitted for zero-amount trades and unexpected state changes may occur.

Examples

code/contracts/exchange/Exchange.sol:L34-L39

function matchOrders(
 LibOrder.OrderParam memory takerOrderParam,
 LibOrder.OrderParam[] memory makerOrderParams,
 address _perpetual,
 uint256[] memory amounts
) public {

code/contracts/exchange/Exchange.sol:L113-L113

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/33

function matchOrderWithAMM(LibOrder.OrderParam memory takerOrderParam, address
_perpetual, uint256 amount) public {

Recommendation

Require makerOrderParams.length > 0 && amounts.length == makerOrderParams.length

Require that amount or any of the amounts[i] provided to matchOrders is >=tradingLotSize .

6.10 AMM - Liquidity provider may lose up to lotSize when removing liquidity
Medium

Description

When removing liquidity, the amount of collateral received is calculated from the shareAmount (ShareToken)
of the liquidity provider. The liquidity removal process registers a trade on the amount, with the liquidity
provider and AMM taking opposite sides. Because trading only accepts multiple of the lotSize , the leftover is
discarded. The amount discarded may be up to lotSize - 1 .

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/32

The expectation is that this value should not be too high, but as lotSize can be set to arbitrary values by an
admin, it is possible that this step discards significant value. Additionally, see
https://github.com/Consensys/mcdexio-mai-protocol-v2-audit-2020-05/issues/16 for how this can be exploited
by an admin.

Note that similar behavior is present in Perpetual.liquidateFrom , where the liquidatableAmount
calculated undergoes a similar modulo operation:

code/contracts/perpetual/Perpetual.sol:L277-L278

uint256 liquidatableAmount =
totalPositionSize.sub(totalPositionSize.mod(governance.lotSize));
liquidationAmount =
liquidationAmount.ceil(governance.lotSize).min(maxAmount).min(liquidatableAmount);

Examples

lotSize can arbitrarily be set up to pos_int256_max as long as tradingLotSize % lotSize == 0

code/contracts/perpetual/PerpetualGovernance.sol:L61-L69

} else if (key == "lotSize") {
 require(
 governance.tradingLotSize == 0 ||
governance.tradingLotSize.mod(value.toUint256()) == 0,
 "require tls % ls == 0"
);
 governance.lotSize = value.toUint256();
} else if (key == "tradingLotSize") {
 require(governance.lotSize == 0 || value.toUint256().mod(governance.lotSize) ==
0, "require tls % ls == 0");
 governance.tradingLotSize = value.toUint256();

amount is derived from shareAmount rounded down to the next multiple of the lotSize . The
leftover is discarded.

code/contracts/liquidity/AMM.sol:L289-L294

uint256 amount =
shareAmount.wmul(oldPoolPositionSize).wdiv(shareToken.totalSupply());
amount = amount.sub(amount.mod(perpetualProxy.lotSize()));

perpetualProxy.transferBalanceOut(trader, price.wmul(amount).mul(2));
burnShareTokenFrom(trader, shareAmount);
uint256 opened = perpetualProxy.trade(trader, LibTypes.Side.LONG, price, amount);

Recommendation

Ensure that documentation makes users aware of the fact that they may lose up to lotsize-1 in value.

https://github.com/Consensys/mcdexio-mai-protocol-v2-audit-2020-05/issues/16

Alternatively, track accrued value and permit trades on values that exceed lotSize . Note that this may
add significant complexity.

Ensure that similar system behavior, like the liquidatableAmount calculated in
Perpetual.liquidateFrom , is also documented and communicated clearly to users.

6.11 Oracle - Unchecked oracle response timestamp and integer over/underflow
Medium

Description

The external Chainlink oracle, which provides index price information to the system, introduces risk inherent to
any dependency on third-party data sources. For example, the oracle could fall behind or otherwise fail to be
maintained, resulting in outdated data being fed to the index price calculations of the AMM. Oracle reliance has
historically resulted in crippled on-chain systems, and complications that lead to these outcomes can arise from
things as simple as network congestion.

Ensuring that unexpected oracle return values are properly handled will reduce reliance on off-chain components
and increase the resiliency of the smart contract system that depends on them.

Examples

1. The ChainlinkAdapter and InversedChainlinkAdapter take the oracle’s (int256) latestAnswer
and convert the result using chainlinkDecimalsAdapter . This arithmetic operation can
underflow/overflow if the Oracle provides a large enough answer:

code/contracts/oracle/ChainlinkAdapter.sol:L10-L19

int256 public constant chainlinkDecimalsAdapter = 10**10;

constructor(address _feeder) public {
 feeder = IChainlinkFeeder(_feeder);
}

function price() public view returns (uint256 newPrice, uint256 timestamp) {
 newPrice = (feeder.latestAnswer() * chainlinkDecimalsAdapter).toUint256();
 timestamp = feeder.latestTimestamp();
}

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/31

code/contracts/oracle/InversedChainlinkAdapter.sol:L11-L20

int256 public constant chainlinkDecimalsAdapter = 10**10;

constructor(address _feeder) public {
 feeder = IChainlinkFeeder(_feeder);
}

function price() public view returns (uint256 newPrice, uint256 timestamp) {
 newPrice = ONE.wdiv(feeder.latestAnswer() *
chainlinkDecimalsAdapter).toUint256();
 timestamp = feeder.latestTimestamp();
}

1. The oracle provides a timestamp for the latestAnswer that is not validated and may lead to old oracle
timestamps being accepted (e.g. caused by congestion on the blockchain or a directed censorship attack).

code/contracts/oracle/InversedChainlinkAdapter.sol:L19-L20

 timestamp = feeder.latestTimestamp();
}

Recommendation

Use SafeMath for mathematical computations

Verify latestAnswer is within valid bounds (!=0)

Verify latestTimestamp is within accepted bounds (not in the future, was updated within a reasonable
amount of time)

Deduplicate code by combining both Adapters into one as the only difference is that the
InversedChainlinkAdapter returns ONE.wdiv(price) .

6.12 AMM - Liquidity pools can be initialized with zero collateral Medium

Description

createPool can be initialized with amount == 0 . Because a subsequent call to initFunding can only
happen once, the contract is now initialized with a zero size pool that does not allow any liquidity to be added.

Trying to recover by calling createPool again fails as the funding state is already initialized . The
specification also states the following about createPool :

Open asset pool by deposit to AMM. Only available when pool is empty.

This is inaccurate, as createPool can only be called once due to a check in initFunding , but this call may
leave the pool empty.

Furthermore, the contract’s liquidity management functionality (addLiquidity and removeLiquidity)
allows adding zero liquidity (amount == 0) and removing zero shares (shareAmount == 0). As these
actions do not change the liquidity of the pool, they should be rejected.

Recommendation

Require a minimum amount lotSize to be provided when creating a Pool and adding liquidity via
addLiquidity

Require a minimum amount of shares to be provided when removing liquidity via removeLiquidity

6.13 Perpetual - Administrators can put the system into emergency mode indefinitely
Medium

Description

There is no limitation on how long an administrator can put the Perpetual contract into emergency mode.
Users cannot trade or withdraw funds in emergency mode and are effectively locked out until the admin chooses

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/30
https://github.com/mcdexio/documents/blob/84ddfa77e2bb25db7366b01fc0133cd66122c675/en/perpetual-interfaces.md
https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/27

to put the contract in SETTLED mode.

Examples

code/contracts/perpetual/PerpetualGovernance.sol:L96-L101

function beginGlobalSettlement(uint256 price) public onlyWhitelistAdmin {
 require(status != LibTypes.Status.SETTLED, "already settled");
 settlementPrice = price;
 status = LibTypes.Status.SETTLING;
 emit BeginGlobalSettlement(price);
}

code/contracts/perpetual/Perpetual.sol:L146-L154

function endGlobalSettlement() public onlyWhitelistAdmin {
 require(status == LibTypes.Status.SETTLING, "wrong perpetual status");

 address guy = address(amm.perpetualProxy());
 settleFor(guy);
 status = LibTypes.Status.SETTLED;

 emit EndGlobalSettlement();
}

Recommendation

Set a time-lock when entering emergency mode that allows anyone to set the system to SETTLED after a
fixed amount of time.

6.14 Signed data may be usable cross-chain Medium

Description

Signed order data may be re-usable cross-chain as the chain-id is not explicitly part of the signed data.

It is also recommended to further harden the signature verification and validate that v and s are within
expected bounds. ecrecover() returns 0x0 to indicate an error condition, therefore, a signerAddress or
recovered address of 0x0 should explicitly be disallowed.

Examples

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/21

The signed order data currently includes the EIP712 Domain Name Mai Protocol and the following
information:

code/contracts/lib/LibOrder.sol:L23-L48

Signature verification:

struct Order {
 address trader;
 address broker;
 address perpetual;
 uint256 amount;
 uint256 price;
 /**
 * Data contains the following values packed into 32 bytes
 *
╔════════════════════╤══

 * ║ │ length(bytes) desc
║
 *
╟────────────────────┼──

 * ║ version │ 1 order version
║
 * ║ side │ 1 0: buy (long), 1: sell (short)
║
 * ║ isMarketOrder │ 1 0: limitOrder, 1: marketOrder
║
 * ║ expiredAt │ 5 order expiration time in seconds
║
 * ║ asMakerFeeRate │ 2 maker fee rate (base 100,000)
║
 * ║ asTakerFeeRate │ 2 taker fee rate (base 100,000)
║
 * ║ (d) makerRebateRate│ 2 rebate rate for maker (base 100)
║
 * ║ salt │ 8 salt
║
 * ║ isMakerOnly │ 1 is maker only
║
 * ║ isInversed │ 1 is inversed contract
║
 * ║ │ 8 reserved
║
 *
╚════════════════════╧══

 */
 bytes32 data;
}

code/contracts/lib/LibSignature.sol:L24-L47

function isValidSignature(OrderSignature memory signature, bytes32 hash, address
signerAddress)
 internal
 pure
 returns (bool)
{
 uint8 method = uint8(signature.config[1]);
 address recovered;
 uint8 v = uint8(signature.config[0]);

 if (method == uint8(SignatureMethod.ETH_SIGN)) {
 recovered = ecrecover(
 keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)),
 v,
 signature.r,
 signature.s
);
 } else if (method == uint8(SignatureMethod.EIP712)) {
 recovered = ecrecover(hash, v, signature.r, signature.s);
 } else {
 revert("invalid sign method");
 }

 return signerAddress == recovered;
}

Recommendation

Include the chain-id in the signature to avoid cross-chain validity of signatures

verify s is within valid bounds to avoid signature malleability

if (uint256(s) >
0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
 revert("ECDSA: invalid signature 's' value");
}

verify v is within valid bounds

if (v != 27 && v != 28) {
 revert("ECDSA: invalid signature 'v' value");
}

return invalid if the result of ecrecover() is 0x0

6.15 Exchange - validateOrderParam does not check against
SUPPORTED_ORDER_VERSION Medium

Description

validateOrderParam verifies the signature and version of a provided order. Instead of checking against the
contract constant SUPPORTED_ORDER_VERSION it, however, checks against a hardcoded version 2 in the
method itself.

This might be a problem if SUPPORTED_ORDER_VERSION is seen as the configuration parameter for the allowed
version. Changing it would not change the allowed order version for validateOrderParam as this constant
literal is never used.

At the time of this audit, however, the SUPPORTED_ORDER_VERSION value equals the hardcoded value in the
validateOrderParam method.

Examples

code/contracts/exchange/Exchange.sol:L155-L170

function validateOrderParam(IPerpetual perpetual, LibOrder.OrderParam memory
orderParam)
 internal
 view
 returns (bytes32)
{
 address broker = perpetual.currentBroker(orderParam.trader);
 require(broker == msg.sender, "invalid broker");
 require(orderParam.getOrderVersion() == 2, "unsupported version");
 require(orderParam.getExpiredAt() >= block.timestamp, "order expired");

 bytes32 orderHash = orderParam.getOrderHash(address(perpetual), broker);
 require(orderParam.signature.isValidSignature(orderHash, orderParam.trader),
"invalid signature");
 require(filled[orderHash] < orderParam.amount, "fullfilled order");

 return orderHash;
}

Recommendation

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/12

Check against SUPPORTED_ORDER_VERSION instead of the hardcoded value 2 .

6.16 LibMathSigned - wpowi returns an invalid result for a negative exponent
Medium

Description

LibMathSigned.wpowi(x,n) calculates Wad value x (base) to the power of n (exponent). The exponent is
declared as a signed int, however, the method returns wrong results when calculating x ^(-n) .

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/4

The comment for the wpowi method suggests that n is a normal integer instead of a Wad-denominated value.
This, however, is not being enforced.

Examples

LibMathSigned.wpowi(8000000000000000000, 2) = 64000000000000000000

(wrong) LibMathSigned.wpowi(8000000000000000000, -2) = 64000000000000000000

code/contracts/lib/LibMath.sol:L103-L116

// x ^ n
// NOTE: n is a normal integer, do not shift 18 decimals
// solium-disable-next-line security/no-assign-params
function wpowi(int256 x, int256 n) internal pure returns (int256 z) {
 z = n % 2 != 0 ? x : _WAD;

 for (n /= 2; n != 0; n /= 2) {
 x = wmul(x, x);

 if (n % 2 != 0) {
 z = wmul(z, x);
 }
 }
}

Recommendation

Make wpowi support negative exponents or use the proper type for n (uint) and reject negative values.

Enforce that the exponent bounds are within sane ranges and less than a Wad to detect potential misuse where
someone accidentally provides a Wad value as n .

Add positive and negative unit-tests to fully cover this functionality.

6.17 Outdated solidity version and floating pragma Medium

Description

Using an outdated compiler version can be problematic especially if there are publicly disclosed bugs and issues
(see also https://github.com/ethereum/solidity/releases) that affect the current compiler version.

The codebase specifies a floating version of ^0.5.2 and makes use of the experimental feature
ABIEncoderV2 .

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/2
https://github.com/ethereum/solidity/releases

It should be noted, that ABIEncoderV2 was subject to multiple bug-fixes up until the latest 0.6.x version and
contracts compiled with earlier versions are - for example - susceptible to the following issues:

ImplicitConstructorCallvalueCheck

TupleAssignmentMultiStackSlotComponents

MemoryArrayCreationOverflow

privateCanBeOverridden

YulOptimizerRedundantAssignmentBreakContinue0.5

ABIEncoderV2CalldataStructsWithStaticallySizedAndDynamicallyEncodedMembers

SignedArrayStorageCopy

ABIEncoderV2StorageArrayWithMultiSlotElement

DynamicConstructorArgumentsClippedABIV2

Examples

Codebase declares compiler version ^0.5.2 :

code/contracts/liquidity/AMM.sol:L1-L2

pragma solidity ^0.5.2;
pragma experimental ABIEncoderV2; // to enable structure-type parameters

According to etherscan.io, the currently deployed main-net AMM contract is compiled with solidity version
0.5.8 :

https://etherscan.io/address/0xb95B9fb0539Ec84DeD2855Ed1C9C686Af9A4e8b3#code

Recommendation

It is recommended to settle on the latest stable 0.6.x or 0.5.x version of the Solidity compiler and lock the
pragma version to a specifically tested compiler release.

6.18 AMM - ONE_WAD_U is never used Minor

Description

The const ONE_WAD_U is declared but never used. Avoid re-declaring the same constants in multiple source-
units (and unit-test cases) as this will be hard to maintain.

https://etherscan.io/address/0xb95B9fb0539Ec84DeD2855Ed1C9C686Af9A4e8b3#code
https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/39

Examples

code/contracts/liquidity/AMM.sol:L17-L17

uint256 private constant ONE_WAD_U = 10**18;

Recommendation

Remove unused code. Import the value from a shared resource. E.g. ONE_WAD is declared multiple times in
LibMathSigned , LibMathUnsigned , AMM , hardcoded in checks in
PerpetualGovernance.setGovernanceParameter , AMMGovernance.setGovernanceParameter .

6.19 Perpetual - Variable shadowing in constructor Minor

Description

Perpetual inherits from PerpetualGovernance and Collateral , which declare state variables that are
shadowed in the Perpetual constructor.

Examples

Local constructor argument shadows PerpetualGovernance.globalConfig ,
PerpetualGovernance.devAddress , Collateral.collateral

Note: Confusing name: Collateral is an inherited contract and a state variable.

code/contracts/perpetual/Perpetual.sol:L34-L41

constructor(address globalConfig, address devAddress, address collateral, uint256
collateralDecimals)
 public
 Position(collateral, collateralDecimals)
{
 setGovernanceAddress("globalConfig", globalConfig);
 setGovernanceAddress("dev", devAddress);
 emit CreatePerpetual();
}

Recommendation

Rename the parameter or state variable.

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/37

6.20 Perpetual - The specified decimals for the collateral may not reflect the token’s
actual decimals Minor

Description

When initializing the Perpetual contract, the deployer can decide to use either ETH , or an ERC20 -
compliant collateral. In the latter case, the deployer must provide a nonzero address for the token, as well as the
number of decimals used by the token:

code/contracts/perpetual/Collateral.sol:L28-L34

constructor(address _collateral, uint256 decimals) public {
 require(decimals <= MAX_DECIMALS, "decimals out of range");
 require(_collateral != address(0x0) || (_collateral == address(0x0) && decimals
== 18), "invalid decimals");

 collateral = _collateral;
 scaler = (decimals == MAX_DECIMALS ? 1 : 10**(MAX_DECIMALS -
decimals)).toInt256();
}

The provided decimals value is not checked for validity and can differ from the actual token’s decimals.

Recommendation

Ensure to establish documentation that makes users aware of the fact that the decimals configured are not
enforced to match the actual tokens decimals. This is to allow users to audit the system configuration and decide
whether they want to participate in it.

6.21 AMM - Unchecked return value in ShareToken.mint Minor

Description

ShareToken is an extension of the Openzeppelin ERC20Mintable pattern which exposes a method called
mint() that allows accounts owning the minter role to mint new tokens. The return value of
ShareToken.mint() is not checked.

Since the ERC20 standard does not define whether this method should return a value or revert it may be
problematic to assume that all tokens revert. If, for example, an implementation is used that does not revert on
error but returns a boolean error indicator instead the caller might falsely continue without the token minted.

We would like to note that the functionality is intended to be used with the provided ShareToken and therefore
the contract is safe to use assuming ERC20Mintable.mint reverts on error. The issue arises if the system is
used with a different ShareToken implementation that is not implemented in the same way.

Examples

Openzeppelin implementation

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/35
https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/29
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v2.5.1/contracts/token/ERC20/ERC20Mintable.sol#L20-L23

function mint(address account, uint256 amount) public onlyMinter returns (bool) {
_mint(account, amount);
return true;
}

Call with unchecked return value

code/contracts/liquidity/AMM.sol:L499-L502

function mintShareTokenTo(address guy, uint256 amount) internal {
 shareToken.mint(guy, amount);
}

Recommendation

Consider wrapping the mint statement in a require clause, however, this way only tokens that are returning
a boolean error indicator are supported. Document the specification requirements for the ShareToken and
clearly state if the token is expected to revert or return an error indicator.

It should also be documented that the Token exposes a burn method that does not adhere to the Openzeppelin
ERC20Burnable implementation. The ERC20Burnable import is unused as noted in

https://github.com/Consensys/mcdexio-mai-protocol-v2-audit-2020-05/issues/18.

6.22 Perpetual - beginGlobalSettlement can be called multiple times Minor

Description

https://github.com/Consensys/mcdexio-mai-protocol-v2-audit-2020-05/issues/18
https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/26

The system can be put into emergency mode by an admin calling beginGlobalSettlement and providing a
fixed settlementPrice . The method can be invoked even when the contract is already in SETTLING
(emergency) mode, allowing an admin to selectively adjust the settlement price again. This does not seem to be
the intended behavior as calling the method again re-sets the status to SETTLING . Furthermore, it may affect
users’ behavior during the SETTLING phase.

Examples

code/contracts/perpetual/PerpetualGovernance.sol:L96-L101

function beginGlobalSettlement(uint256 price) public onlyWhitelistAdmin {
 require(status != LibTypes.Status.SETTLED, "already settled");
 settlementPrice = price;
 status = LibTypes.Status.SETTLING;
 emit BeginGlobalSettlement(price);
}

Recommendation

Emergency mode should only be allowed to be set once

6.23 Unused Imports Minor

Description

The following source units are imported but not referenced in the contract:

Examples

code/contracts/perpetual/Perpetual.sol:L4-L5

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";

code/contracts/perpetual/Perpetual.sol:L14-L15

import "../interface/IPriceFeeder.sol";
import "../interface/IGlobalConfig.sol";

code/contracts/token/ShareToken.sol:L5-L5

import "@openzeppelin/contracts/token/ERC20/ERC20Burnable.sol";

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/18

code/contracts/token/ShareToken.sol:L3-L3

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

Recommendation

Check all imports and remove all unused/unreferenced and unnecessary imports.

6.24 Exchange - OrderStatus is never used Minor

Description

The enum OrderStatus is declared but never used.

Examples

code/contracts/exchange/Exchange.sol:L20-L20

enum OrderStatus {EXPIRED, CANCELLED, FILLABLE, FULLY_FILLED}

Recommendation

Remove unused code.

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/13

6.25 LibMath - Inaccurate declaration of _UINT256_MAX Minor

Description

LibMathUnsigned declares _UINT256_MAX as 2^255-1 while this value actually represents
_INT256_MAX . This appears to just be a naming issue.

Examples

(UINT256_MAX/2-1 => pos INT256_MAX ; 2**256/2-1==2**255-1)

code/contracts/lib/LibMath.sol:L228-L230

library LibMathUnsigned {
 uint256 private constant _WAD = 10**18;
 uint256 private constant _UINT256_MAX = 2**255 - 1;

Recommendation

Rename _UINT256_MAX to _INT256MAX or _SIGNED_INT256MAX .

6.26 LibMath - inconsistent assertion text and improve representation of literals with
many digits Minor

Description

The assertion below states that logE only accepts v <= 1e22 * 1e18 while the argument name is x . In
addition to that we suggest representing large literals in scientific notation.

Examples

code/contracts/lib/LibMath.sol:L153-L157

function wln(int256 x) internal pure returns (int256) {
 require(x > 0, "logE of negative number");
 require(x <= 100, "logE only accepts v <=
1e22 * 1e18"); // in order to prevent using safe-math
 int256 r = 0;
 uint8 extra_digits = longer_digits - fixed_digits;

Recommendation

Update the inconsistent assertion text v -> x and represent large literals in scientific notation as they are
otherwise difficult to read and review.

6.27 LibMath - roundHalfUp returns unfinished result Minor

Description

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/9
https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/8
https://solidity.readthedocs.io/en/latest/types.html#rational-and-integer-literals
https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/7

The method LibMathSigned.roundHalfUp(int x, int y) returns the value x rounded up to the base y .
The method suggests that the result is the rounded value while that’s not actually true. The result for a positive
x is x + base/2 and x - base/2 for negative values. The rounding is not yet finished as this would

require a final division by base y to manifest the rounding.

It is assumed that the final rounding step is not executed for performance reasons. However, this might easily
introduce errors when the caller assumes the result is rounded for base while it is not.

Examples

roundHalfUp(-4700, 1000) = -4700 instead of 5000

roundHalfUp(4700, 1000) = 4700 instead of 5000

code/contracts/lib/LibMath.sol:L126-L133

// ROUND_HALF_UP rule helper. 0.5 ≈ 1, 0.4 ≈ 0, -0.5 ≈ -1, -0.4 ≈ 0
function roundHalfUp(int256 x, int256 y) internal pure returns (int256) {
 require(y > 0, "roundHalfUp only supports y > 0");
 if (x >= 0) {
 return add(x, y / 2);
 }
 return sub(x, y / 2);
}

Recommendation

We have verified the current code-base and the callers for roundHalfUp are correctly finishing the rounding
step. However, it is recommended to finish the rounding within the method or document this behavior to prevent
errors caused by code that falsely assumes that the returned value finished rounding.

6.28 LibMath/LibOrder - unused named return value Minor

Description

The following methods declare a named return value but explicitly return a value instead. The named return
value is not used.

LibMathSigned.min()

LibMathSigned.max()

LibMathUnsigned.min()

LibMathUnsigned.max()

LibOrder.getOrderHash()

LibOrder.hashOrder()

Examples

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/6

code/contracts/lib/LibMath.sol:L90-L96

function min(int256 x, int256 y) internal pure returns (int256 z) {
 return x <= y ? x : y;
}

function max(int256 x, int256 y) internal pure returns (int256 z) {
 return x >= y ? x : y;
}

code/contracts/lib/LibMath.sol:L285-L292

function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
 return x <= y ? x : y;
}

function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
 return x >= y ? x : y;
}

code/contracts/lib/LibOrder.sol:L68-L71

function getOrderHash(Order memory order) internal pure returns (bytes32 orderHash) {
 orderHash = LibEIP712.hashEIP712Message(hashOrder(order));
 return orderHash;
}

code/contracts/lib/LibOrder.sol:L86-L97

function hashOrder(Order memory order) internal pure returns (bytes32 result) {
 bytes32 orderType = EIP712_ORDER_TYPE;
 // solium-disable-next-line security/no-inline-assembly
 assembly {
 let start := sub(order, 32)
 let tmp := mload(start)
 mstore(start, orderType)
 result := keccak256(start, 224)
 mstore(start, tmp)
 }
 return result;
}

Recommendation

Remove the named return value and explicitly return the value.

6.29 Where possible, a specific contract type should be used rather than address
Minor

Description

Rather than storing address es and then casting to the known contract type, it’s better to use the best type
available so the compiler can check for type safety.

Examples

Collateral. collateral is of type address , but it could be type IERC20 instead. Not only would this
give a little more type safety when deploying new modules, but it would avoid repeated casts throughout the
codebase of the form IERC20(collateral) , IPerpetual(_perpetual) and others. The following is an
incomplete list of examples:

declare collateral as IERC20

code/contracts/perpetual/Collateral.sol:L19-L19

address public collateral;

code/contracts/perpetual/Collateral.sol:L51-L51

IERC20(collateral).safeTransferFrom(guy, address(this), rawAmount);

declare argument perpetual as IPerpetual

code/contracts/exchange/Exchange.sol:L34-L42

function matchOrders(
 LibOrder.OrderParam memory takerOrderParam,
 LibOrder.OrderParam[] memory makerOrderParams,
 address _perpetual,
 uint256[] memory amounts

https://github.com/ConsenSys/mcdexio-mai-protocol-v2-audit-2020-05/issues/1

) public {
 require(!takerOrderParam.isMakerOnly(), "taker order is maker only");

 IPerpetual perpetual = IPerpetual(_perpetual);

declare argument feeder as IChainlinkFeeder

code/contracts/oracle/ChainlinkAdapter.sol:L12-L14

constructor(address _feeder) public {
 feeder = IChainlinkFeeder(_feeder);
}

Remediation

Where possible, use more specific types instead of address . This goes for parameter types as well as state
variable types.

Appendix 1 - Files in Scope

This audit covered the following files of the mcdexio/mai-protocol-v2 source code repository:

File Name SHA-1 Hash

contracts/token/ShareToken.sol 381ad1be612285ad2396bf157377721e285ed2fc

contracts/reader/ContractReader.sol 6177fd113dc02f6865bc1670e060a048c1ccccbd

contracts/perpetual/Brokerage.sol cb5096494e9069652c8734065d24eb94fc0bff6a

contracts/perpetual/Position.sol 5591403e58a6275423e775e0ba0bd791a9e984de

contracts/perpetual/PerpetualGovernance.sol 814c9d9968fcc6c9ee277b2c6dd7ed7fceb0e579

contracts/perpetual/Collateral.sol 22a68f571f18ea64ed13abf7890ecc1142915319

contracts/perpetual/Perpetual.sol 1a21792905c2b539250eac8dff23d26f41b8857e

contracts/interface/IPerpetual.sol 1e01454b6d0ba5b87b6c04f49603ea7707493df0

contracts/interface/IPerpetualProxy.sol d299c3517f5ebbea7084e7164132fd8dbafdd4e0

contracts/interface/IPriceFeeder.sol b3bda1d692e4ed8695645fcae9c477912b589d55

contracts/interface/IGlobalConfig.sol 3c0938eddfa01b89441711abe96e6ae526447449

contracts/interface/IChainlinkFeeder.sol ddcb0abf1ee1340a0f17efe759a51735325a5994

contracts/interface/IAMM.sol 1868a2ecaee45cc12bda6008a0b3d75e2bdc9630

contracts/exchange/Exchange.sol 997aac71ecce4cdb5d41e55a4dd3e96f1a2aa36a

contracts/proxy/PerpetualProxy.sol a210d447cfb54001d1038d42b1114baf021e4cb2

contracts/oracle/InversedChainlinkAdapter.sol 0e2dbd0a887083c2908136437dea938d0d4c4df2

contracts/oracle/ChainlinkAdapter.sol a8df0adf24497f4310fd8beab999b7750c599261

contracts/lib/LibSignature.sol d172e939094fe391a7f1854719791d352f56e63f

contracts/lib/LibOrder.sol 606607a62692cc6067177d605b3bba0215211bd7

contracts/lib/LibEIP712.sol 6cb47eb26501eb52fbb83d1cd8d3b7e8425d5e0d

contracts/lib/LibTypes.sol bc18a1473b87daa954aeb89fa5fb6c39aa673c40

contracts/lib/LibMath.sol f81580d413630756486ac49f8de85320e93183d3

contracts/global/GlobalConfig.sol 8450d1c86e45a03d8b761086274af0ce00ac38b2

contracts/liquidity/AMM.sol bc103b3b4079014b706f7e1c926e46ad60c4c824

https://github.com/mcdexio/mai-protocol-v2/tree/4b198083ec4ae2d6851e101fc44ea333eaa3cd92

File Name SHA-1 Hash

contracts/liquidity/AMMGovernance.sol 88c156db493915ec2749eaf68832bfc2d21f5164

Excluded Source Units

File

contracts/test/TestOrder.sol

contracts/test/TestToken.sol

contracts/test/TestBrokerage.sol

contracts/test/TestAMM.sol

contracts/test/TestCollateral.sol

contracts/test/TestPerpetual.sol

contracts/test/TestFundingMock.sol

contracts/test/TestPosition.sol

contracts/test/TestPerpetualGovernance.sol

contracts/test/TestMath.sol

contracts/test/TestSignature.sol

contracts/test/TestPriceFeeder.sol

contracts/test/TestTypes.sol

Appendix 2 - Artifacts

This section contains some of the artifacts generated during our review by automated tools, the test suite, etc. If
any issues or recommendations were identified by the output presented here, they have been addressed in the
appropriate section above.

A.2.1 Solidity Code Metrics

Type File
Logic

Contracts
Interfaces Lines nS

• contracts/reader/ContractReader.sol 1 __ 76 72

• contracts/token/ShareToken.sol 1 __ 21 21

• contracts/perpetual/Brokerage.sol 1 __ 62 62

• contracts/perpetual/Position.sol 1 __ 297 28

• contracts/perpetual/PerpetualGovernance.sol 1 __ 102 10

• contracts/perpetual/Collateral.sol 1 __ 159 15

• contracts/perpetual/Perpetual.sol 1 __ 317 31

• contracts/interface/IPerpetual.sol __ 1 71 10

• contracts/interface/IPerpetualProxy.sol __ 1 85 18

• contracts/interface/IPriceFeeder.sol __ 1 6 5

• contracts/interface/IGlobalConfig.sol __ 1 7 4

• contracts/interface/IChainlinkFeeder.sol __ 1 9 6

• contracts/interface/IAMM.sol __ 1 44 9

• contracts/exchange/Exchange.sol 1 __ 236 20

• contracts/proxy/PerpetualProxy.sol 1 __ 157 15

• contracts/oracle/InversedChainlinkAdapter.sol 1 __ 21 21

• contracts/oracle/ChainlinkAdapter.sol 1 __ 20 20

• contracts/lib/LibSignature.sol 1 __ 48 44

• contracts/lib/LibOrder.sol 1 __ 143 13

• contracts/lib/LibEIP712.sol 1 __ 30 30

Inline Documentation

Comment-to-Source Ratio: On average there are 9.32 code lines per comment.

ToDo’s: 0

Components

• Contracts • Libraries • Interfaces

14 6 6

Exposed Functions

This section lists functions that are explicitly declared public or payable. Please note that getter methods for
public stateVars are not included.

• Public • Payable

212 11

External Internal Private Pure View

85 283 8 49 97

StateVariables

Total • Public

58 30

Capabilities

Type File
Logic

Contracts
Interfaces Lines nS

• contracts/lib/LibTypes.sol 1 __ 83 83

• contracts/lib/LibMath.sol 2 __ 307 30

• contracts/global/GlobalConfig.sol 1 __ 28 28

• contracts/liquidity/AMM.sol 1 __ 782 73

• contracts/liquidity/AMMGovernance.sol 1 __ 47 47

• •

•
Totals 20 6 3158 28

Solidity
Versions
observed

•

Experimental
Features

• Can
Receive
Funds

• Uses
Assembly

• Has
Destroyable
Contracts

Solidity
Versions
observed

•

Experimental
Features

• Can
Receive
Funds

• Uses
Assembly

• Has
Destroyable
Contracts

^0.5.2 ABIEncoderV2 yes

yes

(1 asm

blocks)

no

A.2.2 MythX

MythX is a security analysis API for Ethereum smart contracts. It performs multiple types of analysis, including
fuzzing and symbolic execution, to detect many common vulnerability types. The tool was used for automated
vulnerability discovery for all audited contracts and libraries. More details on MythX can be found at mythx.io.

Below is the raw output of the MythX vulnerability scan:

•

Transfers
ETH

•

Low-
Level
Calls

•

DelegateCall

• Uses
Hash

Functions

•

ECRecover
•

New/Create/Create2

yes no no yes yes no

Report for contracts/lib/LibSignature.sol
https://dashboard.mythx.io/#/console/analyses/6047d58d-1791-42fe-a5f1-8500f315dae3
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/exchange/Exchange.sol
https://dashboard.mythx.io/#/console/analyses/ee89f431-6db4-4971-9e67-dc3e159e956c
╒════════╤═══════════════════════╤════════════╤═══════════════════════════

│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═══════════════════════╪════════════╪═══════════════════════════

│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
├────────┼───────────────────────┼────────────┼───────────────────────────

│ 117 │ Requirement Violation │ Low │ Requirement violation. │
├────────┼───────────────────────┼────────────┼───────────────────────────

│ 11 │ Requirement Violation │ Low │ Requirement violation. │
╘════════╧═══════════════════════╧════════════╧═══════════════════════════

Report for contracts/global/GlobalConfig.sol
https://dashboard.mythx.io/#/console/analyses/08afe18e-1328-44f3-b37f-e972afbf19b6

https://mythx.io/

╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for @openzeppelin/contracts/access/Roles.sol
https://dashboard.mythx.io/#/console/analyses/741aefc4-b04e-4dc6-a728-9543a769bb1d
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/test/TestPriceFeeder.sol
https://dashboard.mythx.io/#/console/analyses/1856d0ef-3be2-444e-ad54-43c14ac9bcf6
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/test/TestBrokerage.sol
https://dashboard.mythx.io/#/console/analyses/bc7e41d3-d310-4152-95ca-796d9c004d4f
╒════════╤═══════════════════════════════════╤════════════╤═══════════════

│ Line │ SWC Title │ Severity │ Short Description
│
╞════════╪═══════════════════════════════════╪════════════╪═══════════════

│ 1 │ Floating Pragma │ Low │ A floating pragma is set.
│
├────────┼───────────────────────────────────┼────────────┼───────────────

│ 11 │ State Variable Default Visibility │ Low │ State variable visibility
is not set. │
╘════════╧═══════════════════════════════════╧════════════╧═══════════════

Report for contracts/reader/ContractReader.sol
https://dashboard.mythx.io/#/console/analyses/da56e9d5-e0ac-4178-ba1d-81f2d4fd3cd5
╒════════╤═══════════════════════╤════════════╤═══════════════════════════

│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═══════════════════════╪════════════╪═══════════════════════════

│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
├────────┼───────────────────────┼────────────┼───────────────────────────

│ 72 │ Requirement Violation │ Low │ Requirement violation. │
├────────┼───────────────────────┼────────────┼───────────────────────────

│ 9 │ Requirement Violation │ Low │ Requirement violation. │
╘════════╧═══════════════════════╧════════════╧═══════════════════════════

Report for contracts/perpetual/PerpetualGovernance.sol

https://dashboard.mythx.io/#/console/analyses/d8ead7bf-9c61-4374-afcc-06b180eee012
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/oracle/InversedChainlinkAdapter.sol
https://dashboard.mythx.io/#/console/analyses/8ac7c111-1436-4bd7-800b-c41ecc640df6
╒════════╤════════════════════════════════╤════════════╤══════════════════

│ Line │ SWC Title │ Severity │ Short Description
│
╞════════╪════════════════════════════════╪════════════╪══════════════════

│ 18 │ Integer Overflow and Underflow │ High │ The arithmetic operator can
overflow. │
├────────┼────────────────────────────────┼────────────┼──────────────────

│ 1 │ Floating Pragma │ Low │ A floating pragma is set.
│
├────────┼────────────────────────────────┼────────────┼──────────────────

│ 19 │ DoS with Failed Call │ Low │ Multiple calls are executed
in the same transaction. │
╘════════╧════════════════════════════════╧════════════╧══════════════════

Report for @openzeppelin/contracts/token/ERC20/ERC20Burnable.sol
https://dashboard.mythx.io/#/console/analyses/5e47c8e8-a4ed-4870-9b3e-d2b1d69fff8f
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/test/TestPerpetualGovernance.sol
https://dashboard.mythx.io/#/console/analyses/e5ee874a-7004-46ca-b120-2555f750e60c
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/test/TestTypes.sol
https://dashboard.mythx.io/#/console/analyses/73f7ec4a-14eb-45df-bb92-82d724ed2aa5
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/test/TestFundingMock.sol
https://dashboard.mythx.io/#/console/analyses/b75e455a-0568-47fa-8301-9e9d79425f49
╒════════╤═══════════════════════════════════╤════════════╤═══════════════

│ Line │ SWC Title │ Severity │ Short Description

│
╞════════╪═══════════════════════════════════╪════════════╪═══════════════

│ 1 │ Floating Pragma │ Low │ A floating pragma is set.
│
├────────┼───────────────────────────────────┼────────────┼───────────────

│ 36 │ State Variable Default Visibility │ Low │ State variable visibility
is not set. │
╘════════╧═══════════════════════════════════╧════════════╧═══════════════

Report for contracts/test/TestAMM.sol
https://dashboard.mythx.io/#/console/analyses/77de240b-0a47-47f6-b814-70af1135bf34
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/lib/LibOrder.sol
https://dashboard.mythx.io/#/console/analyses/7729c6f0-6e9e-4890-aa73-e9e3bc506269
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/test/TestToken.sol
https://dashboard.mythx.io/#/console/analyses/7e2d60b2-1772-4025-b519-dcc0bec73da0
╒════════╤═══════════════════════════════════╤════════════╤═══════════════

│ Line │ SWC Title │ Severity │ Short Description
│
╞════════╪═══════════════════════════════════╪════════════╪═══════════════

│ 49 │ Unknown │ Medium │ Incorrect ERC20
implementation │
├────────┼───────────────────────────────────┼────────────┼───────────────

│ 39 │ Assert Violation │ Medium │ An assertion violation
was triggered. │
├────────┼───────────────────────────────────┼────────────┼───────────────

│ 1 │ Floating Pragma │ Low │ A floating pragma is set.
│
├────────┼───────────────────────────────────┼────────────┼───────────────

│ 52 │ State Variable Default Visibility │ Low │ State variable visibility
is not set. │
├────────┼───────────────────────────────────┼────────────┼───────────────

│ 33 │ Assert Violation │ Low │ An assertion violation
was triggered. │
├────────┼───────────────────────────────────┼────────────┼───────────────

│ 192 │ Shadowing State Variables │ Low │ State variable shadows
another state variable. │
╘════════╧═══════════════════════════════════╧════════════╧═══════════════

Report for contracts/test/TestSignature.sol
https://dashboard.mythx.io/#/console/analyses/74462b47-a65f-4403-9925-3c6c3ccbe197
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/lib/LibMath.sol
https://dashboard.mythx.io/#/console/analyses/55066a9a-2c85-494d-8ba7-f0adfa8ef5f5
╒════════╤══════════════════════════╤════════════╤════════════════════════

│ Line │ SWC Title │ Severity │ Short Description
│
╞════════╪══════════════════════════╪════════════╪════════════════════════

│ 1 │ Floating Pragma │ Low │ A floating pragma is set.
│
├────────┼──────────────────────────┼────────────┼────────────────────────

│ 109 │ DoS With Block Gas Limit │ Low │ Loop over unbounded data
structure. │
├────────┼──────────────────────────┼────────────┼────────────────────────

│ 168 │ DoS With Block Gas Limit │ Low │ Loop over unbounded data
structure. │
├────────┼──────────────────────────┼────────────┼────────────────────────

│ 172 │ DoS With Block Gas Limit │ Low │ Loop over unbounded data
structure. │
╘════════╧══════════════════════════╧════════════╧════════════════════════

Report for @openzeppelin/contracts/math/SafeMath.sol
https://dashboard.mythx.io/#/console/analyses/f8da3ca7-62e2-4353-83e9-1ca5f720b9a1
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/token/ShareToken.sol
https://dashboard.mythx.io/#/console/analyses/f915729c-0df1-4396-8f4c-e7639d48aea9
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/perpetual/Perpetual.sol
https://dashboard.mythx.io/#/console/analyses/a909e39b-afcd-47c3-b4dc-d2d914e3d82c

╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/oracle/ChainlinkAdapter.sol
https://dashboard.mythx.io/#/console/analyses/d7c7a24f-593b-4ce0-8d1f-97748904c849
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/test/TestMath.sol
https://dashboard.mythx.io/#/console/analyses/cab62764-db1e-4368-850a-b29946a73d17
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/test/TestToken.sol
https://dashboard.mythx.io/#/console/analyses/de774a6c-178f-49ea-b1f3-ab25199da540
╒════════╤═══════════════════════════════════╤════════════╤═══════════════

│ Line │ SWC Title │ Severity │ Short Description
│
╞════════╪═══════════════════════════════════╪════════════╪═══════════════

│ 49 │ Unknown │ Medium │ Incorrect ERC20
implementation │
├────────┼───────────────────────────────────┼────────────┼───────────────

│ 1 │ Floating Pragma │ Low │ A floating pragma is set.
│
├────────┼───────────────────────────────────┼────────────┼───────────────

│ 52 │ State Variable Default Visibility │ Low │ State variable visibility
is not set. │
├────────┼───────────────────────────────────┼────────────┼───────────────

│ 192 │ Shadowing State Variables │ Low │ State variable shadows
another state variable. │
╘════════╧═══════════════════════════════════╧════════════╧═══════════════

Report for @openzeppelin/contracts/token/ERC20/ERC20Mintable.sol
https://dashboard.mythx.io/#/console/analyses/ae378fc1-dbf7-4c10-b0f9-5a0bc3429010
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/perpetual/Position.sol
https://dashboard.mythx.io/#/console/analyses/96a418fe-69fe-4dda-aa61-2a19d233687e

╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for @openzeppelin/contracts/token/ERC20/SafeERC20.sol
https://dashboard.mythx.io/#/console/analyses/9b342c42-3ae8-4f6b-b169-7244c353ec11
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for @openzeppelin/contracts/utils/Address.sol
https://dashboard.mythx.io/#/console/analyses/517d5d70-94db-4da3-93a7-07f2317d4d4e
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/lib/LibEIP712.sol
https://dashboard.mythx.io/#/console/analyses/e6301b3d-22ff-4a8d-8791-4e27dac38fab
╒════════╤══════════════════════════╤════════════╤════════════════════════

│ Line │ SWC Title │ Severity │ Short Description
│
╞════════╪══════════════════════════╪════════════╪════════════════════════

│ 27 │ Unknown │ Medium │ Incorrect function
"hashEIP712Message" state mutability │
├────────┼──────────────────────────┼────────────┼────────────────────────

│ 1 │ Floating Pragma │ Low │ A floating pragma is set.
│
├────────┼──────────────────────────┼────────────┼────────────────────────

│ 18 │ DoS With Block Gas Limit │ Low │ Potentially unbounded data
structure passed to builtin. │
╘════════╧══════════════════════════╧════════════╧════════════════════════

Report for contracts/test/TestToken.sol
https://dashboard.mythx.io/#/console/analyses/fc1ab4bb-f661-4f85-8349-ae3c98eb41c5
╒════════╤═══════════════════════════════════╤════════════╤═══════════════

│ Line │ SWC Title │ Severity │ Short Description
│
╞════════╪═══════════════════════════════════╪════════════╪═══════════════

│ 49 │ Unknown │ Medium │ Incorrect ERC20
implementation │
├────────┼───────────────────────────────────┼────────────┼───────────────

│ 1 │ Floating Pragma │ Low │ A floating pragma is set.

│
├────────┼───────────────────────────────────┼────────────┼───────────────

│ 52 │ State Variable Default Visibility │ Low │ State variable visibility
is not set. │
├────────┼───────────────────────────────────┼────────────┼───────────────

│ 192 │ Shadowing State Variables │ Low │ State variable shadows
another state variable. │
╘════════╧═══════════════════════════════════╧════════════╧═══════════════

Report for contracts/liquidity/AMM.sol
https://dashboard.mythx.io/#/console/analyses/25349e5a-3f27-4e06-905e-f8b41ff66599
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/test/TestOrder.sol
https://dashboard.mythx.io/#/console/analyses/1d33a597-5dd9-4118-85c6-cd7808496b3e
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/test/TestPosition.sol
https://dashboard.mythx.io/#/console/analyses/742d22bd-0e4c-4f3d-939a-f1d07a56297d
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/perpetual/Brokerage.sol
https://dashboard.mythx.io/#/console/analyses/1f0a8138-1b11-4fc9-abc2-916c3c723aec
╒════════╤══╤════════════╤

│ Line │ SWC Title │ Severity │ Short
Description │
╞════════╪══╪════════════╪

│ 1 │ Floating Pragma │ Low │ A floating
pragma is set. │
├────────┼──┼────────────┼

│ 30 │ Weak Sources of Randomness from Chain Attributes │ Low │ Potential
use of "block.number" as source of randonmness. │
├────────┼──┼────────────┼

│ 32 │ Weak Sources of Randomness from Chain Attributes │ Low │ Potential
use of "block.number" as source of randonmness. │
├────────┼──┼────────────┼

│ 45 │ Weak Sources of Randomness from Chain Attributes │ Low │ Potential
use of "block.number" as source of randonmness. │
├────────┼──┼────────────┼

│ 56 │ Weak Sources of Randomness from Chain Attributes │ Low │ Potential
use of "block.number" as source of randonmness. │
├────────┼──┼────────────┼

│ 56 │ Weak Sources of Randomness from Chain Attributes │ Low │ A control
flow decision is made based on The block.number environment variable. │
╘════════╧══╧════════════╧

Report for contracts/perpetual/Collateral.sol
https://dashboard.mythx.io/#/console/analyses/21119bf4-8cd7-4beb-9c76-fdb972f25835
╒════════╤══╤════════════╤

│ Line │ SWC Title │ Severity │ Short
Description │
╞════════╪══╪════════════╪

│ 1 │ Floating Pragma │ Low │ A floating
pragma is set. │
├────────┼──┼────────────┼

│ 62 │ Weak Sources of Randomness from Chain Attributes │ Low │ Potential
use of "block.number" as source of randonmness. │
├────────┼──┼────────────┼

│ 71 │ Weak Sources of Randomness from Chain Attributes │ Low │ Potential
use of "block.number" as source of randonmness. │
╘════════╧══╧════════════╧

Report for @openzeppelin/contracts/access/roles/WhitelistedRole.sol
https://dashboard.mythx.io/#/console/analyses/ef339987-71f9-4bc3-886f-e70d937b1728
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/Migrations.sol
https://dashboard.mythx.io/#/console/analyses/11d9299f-940a-4949-a87c-d7be1911681c
╒════════╤═════════════════╤════════════╤═════════════════════════════════

│ Line │ SWC Title │ Severity │ Short Description
│
╞════════╪═════════════════╪════════════╪═════════════════════════════════

│ 1 │ Floating Pragma │ Low │ A floating pragma is set.
│
├────────┼─────────────────┼────────────┼─────────────────────────────────

│ 21 │ Reentrancy │ Low │ A call to a user-supplied address is

executed. │
╘════════╧═════════════════╧════════════╧═════════════════════════════════

Report for contracts/test/TestMath.sol
https://dashboard.mythx.io/#/console/analyses/c6fc0bc1-f65f-4785-accb-6d1c27e14e51
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/lib/LibMath.sol
https://dashboard.mythx.io/#/console/analyses/223038b8-f6a7-4502-a3c1-3e265bb7c80c
╒════════╤══════════════════════════╤════════════╤════════════════════════

│ Line │ SWC Title │ Severity │ Short Description
│
╞════════╪══════════════════════════╪════════════╪════════════════════════

│ 1 │ Floating Pragma │ Low │ A floating pragma is set.
│
├────────┼──────────────────────────┼────────────┼────────────────────────

│ 109 │ DoS With Block Gas Limit │ Low │ Loop over unbounded data
structure. │
├────────┼──────────────────────────┼────────────┼────────────────────────

│ 168 │ DoS With Block Gas Limit │ Low │ Loop over unbounded data
structure. │
├────────┼──────────────────────────┼────────────┼────────────────────────

│ 172 │ DoS With Block Gas Limit │ Low │ Loop over unbounded data
structure. │
╘════════╧══════════════════════════╧════════════╧════════════════════════

Report for contracts/liquidity/AMMGovernance.sol
https://dashboard.mythx.io/#/console/analyses/7a5f404c-3296-4860-a630-2d039e156e46
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/lib/LibTypes.sol
https://dashboard.mythx.io/#/console/analyses/8f7324fd-e740-4cd2-ab14-1d8c80bbc081
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for @openzeppelin/contracts/token/ERC20/ERC20.sol
https://dashboard.mythx.io/#/console/analyses/99f431e4-129d-491a-a1a5-1ef37e47b9af
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │

A.2.3 Surya

Surya is a utility tool for smart contract systems. It provides a number of visual outputs and information about
the structure of smart contracts. It also supports querying the function call graph in multiple ways to aid in the
manual inspection and control flow analysis of contracts.

Below is a complete list of functions with their visibility and modifiers:

╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/test/TestCollateral.sol
https://dashboard.mythx.io/#/console/analyses/0f34b74d-c3f0-4cb0-a44d-957052a0d8b1
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/test/TestPerpetual.sol
https://dashboard.mythx.io/#/console/analyses/0a61dc46-295a-4126-938a-ee8fc428dffb
╒════════╤═════════════════╤════════════╤═══════════════════════════╕
│ Line │ SWC Title │ Severity │ Short Description │
╞════════╪═════════════════╪════════════╪═══════════════════════════╡
│ 1 │ Floating Pragma │ Low │ A floating pragma is set. │
╘════════╧═════════════════╧════════════╧═══════════════════════════╛
Report for contracts/proxy/PerpetualProxy.sol
https://dashboard.mythx.io/#/console/analyses/3a0d1dec-abbb-4dce-b395-4f59411832bc
╒════════╤═══════════════════════════════════╤════════════╤═══════════════

│ Line │ SWC Title │ Severity │ Short Description
│
╞════════╪═══════════════════════════════════╪════════════╪═══════════════

│ 1 │ Floating Pragma │ Low │ A floating pragma is set.
│
├────────┼───────────────────────────────────┼────────────┼───────────────

│ 13 │ State Variable Default Visibility │ Low │ State variable visibility
is not set. │
╘════════╧═══════════════════════════════════╧════════════╧═══════════════

Contract Type Bases

└ Function Name Visibility Muta

ShareToken Implementation ERC20Mintable

└ Public • •

└ burn Public • •

Contract Type Bases

ContractReader Implementation

└ getGovParams Public •

└ getPerpetualStorage Public •

└ getAccountStorage Public •

Brokerage Implementation

└ setBroker Internal • •

└ currentBroker Public •

└ getBroker Public •

Position Implementation
Collateral,

PerpetualGovernance

└ Public • •

└ socialLossPerContract Public •

└ totalSize Public •

└ getPosition Public •

└ calculateLiquidateAmount Public • •

└ addSocialLossPerContract Internal • •

└ marginBalanceWithPrice Internal • •

└ availableMarginWithPrice Internal • •

└ marginWithPrice Internal •

└ maintenanceMarginWithPrice Internal •

└ drawableBalanceWithPrice Internal • •

└ pnlWithPrice Internal • •

└ increaseTotalSize Internal • •

└ decreaseTotalSize Internal • •

└ socialLoss Internal •

└ socialLossWithAmount Internal •

Contract Type Bases

└ fundingLoss Internal • •

└ fundingLossWithAmount Internal • •

└ remargin Internal • •

└ calculatePnl Internal • •

└ open Internal • •

└ close Internal • •

└ trade Internal • •

└ handleSocialLoss Internal • •

└ liquidate Internal • •

PerpetualGovernance Implementation WhitelistedRole

└ getGovernance Public •

└ setGovernanceParameter Public • •

└ setGovernanceAddress Public • •

└ beginGlobalSettlement Public • •

Collateral Implementation

└ Public • •

└ getCashBalance Public •

└ isTokenizedCollateral Internal •

└ deposit Internal • •

└ applyForWithdrawal Internal • •

└ _withdraw Private • •

└ withdraw Internal • •

└ depositToProtocol Internal • •

└ withdrawFromProtocol Internal • •

└ withdrawAll Internal • •

└ updateBalance Internal • •

Contract Type Bases

└ ensurePositiveBalance Internal • •

└ transferBalance Internal • •

└ toWad Internal •

└ toCollateral Internal •

Perpetual Implementation Brokerage, Position

└ Public • •

└ setCashBalance Public • •

└ External • •

└ markPrice Public • •

└ setBroker Public • •

└ setBrokerFor Public • •

└ depositToAccount Private • •

└ depositFor Public • •

└ depositEtherFor Public • •

└ deposit Public • •

└ depositEther Public • •

└ depositAndSetBroker Public • •

└ depositEtherAndSetBroker Public • •

└ applyForWithdrawal Public • •

└ settleFor Private • •

└ settle Public • •

└ endGlobalSettlement Public • •

└ withdrawFromAccount Private • •

└ withdrawFor Public • •

└ withdraw Public • •

└ depositToInsuranceFund Public • •

Contract Type Bases

└ depositEtherToInsuranceFund Public • •

└ withdrawFromInsuranceFund Public • •

└ positionMargin Public • •

└ maintenanceMargin Public • •

└ marginBalance Public • •

└ pnl Public • •

└ availableMargin Public • •

└ drawableBalance Public • •

└ isSafe Public • •

└ isSafeWithPrice Public • •

└ isBankrupt Public • •

└ isIMSafe Public • •

└ isIMSafeWithPrice Public • •

└ liquidateFrom Public • •

└ liquidate Public • •

└ tradePosition Public • •

└ transferCashBalance Public • •

IPerpetual Interface

└ devAddress External •

└ getCashBalance External •

└ getPosition External •

└ getBroker External •

└ getGovernance External •

└ status External •

└ settlementPrice External •

└ globalConfig External •

Contract Type Bases

└ collateral External •

└ isWhitelisted External •

└ currentBroker External •

└ amm External •

└ totalSize External •

└ markPrice External • •

└ socialLossPerContract External •

└ availableMargin External • •

└ positionMargin External •

└ maintenanceMargin External •

└ isSafe External • •

└ isSafeWithPrice External • •

└ isIMSafe External • •

└ isIMSafeWithPrice External • •

└ tradePosition External • •

└ transferCashBalance External • •

└ setBrokerFor External • •

└ depositFor External • •

└ depositEtherFor External • •

└ withdrawFor External • •

└ liquidate External • •

└ liquidateFrom External • •

└ insuranceFundBalance External •

IPerpetualProxy Interface

└ self External •

└ perpetual External •

Contract Type Bases

└ devAddress External •

└ currentBroker External •

└ markPrice External • •

└ settlementPrice External •

└ availableMargin External • •

└ getPoolAccount External •

└ cashBalance External •

└ positionSize External •

└ positionSide External •

└ positionEntryValue External •

└ positionEntrySocialLoss External •

└ positionEntryFundingLoss External •

└ status External •

└ socialLossPerContract External •

└ transferBalanceIn External • •

└ transferBalanceOut External • •

└ transferBalanceTo External • •

└ trade External • •

└ setBrokerFor External • •

└ depositFor External • •

└ depositEtherFor External • •

└ withdrawFor External • •

└ isSafe External • •

└ isSafeWithPrice External • •

└ isProxySafe External • •

└ isProxySafeWithPrice External • •

└ isIMSafe External • •

Contract Type Bases

└ isIMSafeWithPrice External • •

└ lotSize External •

└ tradingLotSize External •

IPriceFeeder Interface

└ price External •

IGlobalConfig Interface

└ withdrawalLockBlockCount External •

└ brokerLockBlockCount External •

IChainlinkFeeder Interface

└ latestAnswer External •

└ latestTimestamp External •

IAMM Interface

└ shareTokenAddress External •

└ lastFundingState External •

└ getGovernance External •

└ perpetualProxy External •

└ currentMarkPrice External • •

└ currentAvailableMargin External • •

└ currentFairPrice External • •

└ positionSize External • •

└ currentAccumulatedFundingPerContract External • •

└ settleShare External • •

└ buy External • •

└ sell External • •

└ buyFromWhitelisted External • •

Contract Type Bases

└ sellFromWhitelisted External • •

└ buyFrom External • •

└ sellFrom External • •

Exchange Implementation

└ matchOrders Public • •

└ fillOrder Internal • •

└ matchOrderWithAMM Public • •

└ validatePrice Internal •

└ validateOrderParam Internal •

└ claimTradingFee Internal • •

└ cancelOrder Public • •

└ claimDevFee Internal • •

└ claimTakerDevFee Internal • •

└ claimMakerDevFee Internal • •

PerpetualProxy Implementation

└ Public • •

└ self Public •

└ status Public •

└ devAddress Public •

└ markPrice Public • •

└ settlementPrice Public •

└ currentBroker Public •

└ availableMargin Public • •

└ getPoolAccount Public •

└ cashBalance Public •

└ positionSize Public •

Contract Type Bases

└ positionSide Public •

└ positionEntryValue Public •

└ positionEntrySocialLoss Public •

└ positionEntryFundingLoss Public •

└ socialLossPerContract Public •

└ transferBalanceIn Public • •

└ transferBalanceOut Public • •

└ transferBalanceTo Public • •

└ trade Public • •

└ setBrokerFor Public • •

└ depositFor Public • •

└ depositEtherFor Public • •

└ withdrawFor Public • •

└ isSafe Public • •

└ isSafeWithPrice Public • •

└ isProxySafe Public • •

└ isProxySafeWithPrice Public • •

└ isIMSafe Public • •

└ isIMSafeWithPrice Public • •

└ lotSize Public •

└ tradingLotSize Public •

InversedChainlinkAdapter Implementation

└ Public • •

└ price Public •

ChainlinkAdapter Implementation

└ Public • •

Contract Type Bases

└ price Public •

LibSignature Library

└ isValidSignature Internal •

LibOrder Library

└ getOrderHash Internal •

└ getOrderHash Internal •

└ getOrder Internal •

└ hashOrder Internal •

└ getOrderVersion Internal •

└ getExpiredAt Internal •

└ isSell Internal •

└ getPrice Internal •

└ isMarketOrder Internal •

└ isMarketBuy Internal •

└ isMakerOnly Internal •

└ isInversed Internal •

└ side Internal •

└ makerFeeRate Internal •

└ takerFeeRate Internal •

LibEIP712 Library

└ hashEIP712Message Internal •

LibTypes Library

└ counterSide Internal •

LibMathSigned Library

└ WAD Internal •

Contract Type Bases

└ neg Internal •

└ mul Internal •

└ div Internal •

└ sub Internal •

└ add Internal •

└ wmul Internal •

└ wdiv Internal •

└ wfrac Internal •

└ min Internal •

└ max Internal •

└ toUint256 Internal •

└ wpowi Internal •

└ roundHalfUp Internal •

└ wln Internal •

└ logBase Internal •

└ ceil Internal •

LibMathUnsigned Library

└ WAD Internal •

└ add Internal •

└ sub Internal •

└ mul Internal •

└ div Internal •

└ wmul Internal •

└ wdiv Internal •

└ wfrac Internal •

└ min Internal •

Contract Type Bases

└ max Internal •

└ toInt256 Internal •

└ mod Internal •

└ ceil Internal •

GlobalConfig Implementation WhitelistedRole

└ Public • •

└ setGlobalParameter Public • •

AMM Implementation AMMGovernance

└ Public • •

└ authorizedBroker Internal •

└ shareTokenAddress Public •

└ indexPrice Public •

└ positionSize Public •

└ lastFundingState Public •

└ lastAvailableMargin Internal •

└ lastFairPrice Internal •

└ lastPremium Internal •

└ lastEMAPremium Internal •

└ lastMarkPrice Internal •

└ lastPremiumRate Internal •

└ lastFundingRate Public •

└ currentFundingState Public • •

└ currentAvailableMargin Public • •

└ currentFairPrice Public • •

└ currentPremium Public • •

└ currentMarkPrice Public • •

Contract Type Bases

└ currentPremiumRate Public • •

└ currentFundingRate Public • •

└ currentAccumulatedFundingPerContract Public • •

└ createPool Public • •

└ getBuyPrice Internal • •

└ buyFrom Private • •

└ buyFromWhitelisted Public • •

└ buy Public • •

└ getSellPrice Internal • •

└ sellFrom Private • •

└ sellFromWhitelisted Public • •

└ sell Public • •

└ addLiquidity Public • •

└ removeLiquidity Public • •

└ settleShare Public • •

└ depositAndBuy Public • •

└ depositEtherAndBuy Public • •

└ depositAndSell Public • •

└ depositEtherAndSell Public • •

└ buyAndWithdraw Public • •

└ sellAndWithdraw Public • •

└ depositAndAddLiquidity Public • •

└ depositEtherAndAddLiquidity Public • •

└ updateIndex Public • •

└ initFunding Private • •

└ funding Public • •

└ getBlockTimestamp Internal •

Legend

Symbol Meaning

• Function can modify state

• Function is payable

A.2.4 Tests Suite

Below is the output generated by running the test suite:

Compiling your contracts...
===========================
> Everything is up to date, there is nothing to compile.

Contract Type Bases

└ currentXY Internal • •

└ availableMarginFromPoolAccount Internal •

└ fairPriceFromPoolAccount Internal •

└ premiumFromPoolAccount Internal •

└ mustSafe Internal • •

└ mintShareTokenTo Internal • •

└ burnShareTokenFrom Internal • •

└ forceFunding Internal • •

└ forceFunding Internal • •

└ nextStateWithTimespan Private • •

└ timeOnFundingCurve Internal •

└ integrateOnFundingCurve Internal •

└ getAccumulatedFunding Internal •

AMMGovernance Implementation WhitelistedRole

└ setGovernanceParameter Public • •

└ getGovernance Public •

 Contract: AccumulatedFunding
 ✓ alpha2 (46ms)
 ✓ timeOnFundingCurve - upward (406ms)
 ✓ timeOnFundingCurve - critical (379ms)
 ✓ integrateOnFundingCurve - upward (317ms)
 ✓ integrateOnFundingCurve - downward (348ms)
 ✓ getAccumulatedFunding (20888ms)

 Contract: amm
 exceptions
 ✓ indexPrice (1720ms)
 ✓ invalid broker (111ms)
 ✓ empty pool (1161ms)
 ✓ empty pool (948ms)
 ✓ empty pool (818ms)
 ✓ wrong perpetual status (82ms)
 composed interface
 ✓ depositAndBuy (208ms)
 ✓ depositAndSell (321ms)
 availableMargin
 ✓ without loss (182ms)
 ✓ loss is increasing (281ms)
 create amm
 ✓ spend: no marginBalance (1957ms)
 ✓ should success (4680ms)
 ✓ duplicated (1573ms)
 trading
 ✓ removeLiquidity - no position on removing liqudity (5237ms)
 ✓ removeLiquidity - transfer share (3896ms)
 ✓ removeLiquidity - success (3173ms)
 ✓ buy - success (2568ms)
 ✓ buyAndWithdraw - success (2909ms)
 ✓ buyAndWithdraw - success (524ms)
 ✓ buy - fail - price limit (2283ms)
 ✓ buy - success - pnl < 0, critical deposit amount (1734ms)
 ✓ buy withdraw 0 (1744ms)
 ✓ buy - withdraw (2532ms)
 ✓ buy - fail - pnl < 0, lower than critical deposit amount (2687ms)
 ✓ buy - fail - deadline (1846ms)
 ✓ sell - fail - price unsafe (2512ms)
 ✓ sell - fail - price limit (2126ms)
 ✓ sell - success (2409ms)
 ✓ buy and sell - success (5084ms)
 ✓ sell - success - large amount (2443ms)
 ✓ sell - fail - deadline (1533ms)
 ✓ addLiquidity - fail - no marginBalance (2204ms)
 ✓ addLiquidity - fail - unsafe (2424ms)
 ✓ addLiquidity - success (1739ms)
 ✓ depositAndAddLiquidity - success (1821ms)
 ✓ removeLiquidity - fail - shareBalance limited (493ms)
 ✓ updateIndex (1032ms)

 funding
 ✓ user buys => price increases (above the limit) => long position pays for
fundingLoss (7441ms)
 ✓ user buys => price increases (below the limit) => long position pays for
fundingLoss (6354ms)
estimateGas 15s: 113970
estimateGas 10m: 130876
estimateGas 1d: 154448
estimateGas 1y: 172181
 ✓ consumed gas (2865ms)
 composite helper
 ✓ depositAndBuy - success (2676ms)
 ✓ depositAndBuy, deposit = $0 - success (2092ms)
 ✓ depositAndSell - success (2664ms)
 ✓ depositAndAddLiquidity - success (1918ms)
 inverse contract
 ✓ depositAndBuy - success (1880ms)
 ✓ buyAndWithdraw - success (3816ms)

 Contract: amm-zero-cash
 trading
 ✓ updateIndex - fail - dev account is empty (1278ms)
 ✓ buy - success - without cash (6822ms)
 ✓ addLiquidity - success - using pnl (9649ms)

 Contract: amm-eth
 composite helper
 ✓ depositAndBuy - success (2833ms)
 ✓ depositAndBuy, deposit = $0 - success (1917ms)
 ✓ depositAndSell - success (2601ms)
 ✓ depositAndAddLiquidity - success (2040ms)
 create amm
 ✓ should success (4476ms)
 ✓ duplicated (1506ms)
 trading
 ✓ buy - success (2660ms)
 ✓ buy - fail - price limit (2295ms)
 ✓ buy - success - pnl < 0, critical deposit amount (1743ms)
 ✓ buy - fail - pnl < 0, lower than critical deposit amount (2827ms)
 ✓ buy - fail - deadline (1490ms)
 ✓ sell - fail - price unsafe (2592ms)
 ✓ sell - fail - price limit (2210ms)
 ✓ sell - success (2447ms)
 ✓ buy and sell - success (5193ms)
 ✓ sell - fail - deadline (1510ms)
 ✓ addLiquidity - fail - no marginBalance (2259ms)
 ✓ addLiquidity - fail - unsafe (2327ms)
 ✓ addLiquidity - success (1701ms)
 ✓ removeLiquidity - fail - shareBalance limited (535ms)
 ✓ removeLiquidity - success (3500ms)
 ✓ removeLiquidity - no position on removing liqudity (5353ms)
 ✓ removeLiquidity - transfer share (3848ms)

 ✓ updateIndex (989ms)
 settle
0.000000000000923114
 ✓ settle (1018ms)
 case review
 ✓ sellAndWithdraw0408 (3404ms)

 Contract: TestBrokerage
 ✓ exceptions (92ms)
 ✓ new user => broker works immediately (107ms)
 ✓ modify broker => new broker works later (205ms)
 ✓ when modifing => duplicated modify broker (the same broker) => delay timer is
reset (310ms)
 ✓ when modifing => duplicated modify broker (another broker) => delay timer is
reset (293ms)
 ✓ modify broker success => set the same broker => ignore (387ms)
 ✓ modify broker success => set another broker => new broker works later (370ms)

 Contract: TestCollateral
 exceptions
 ✓ constructor - invalid decimals (74ms)
 ✓ constructor - decimals out of range (63ms)
 ✓ withdraw - negtive amount (313ms)
 ✓ withdraw - negtive amount (352ms)
 misc
 ✓ getCashBalance (253ms)
 ✓ depositToProtocol (366ms)
 deposit / withdraw ether
 ✓ deposit (247ms)
 ✓ withdraw (317ms)
 deposit / withdraw
 ✓ invalid decimals (238ms)
 ✓ decimals == 18 (501ms)
 ✓ decimals == 8 (493ms)
 ✓ decimals == 5 (499ms)
 deposit / withdraw
 deposit
 ✓ deposit (235ms)
 ✓ deposit too much (80ms)
 withdraw
 ✓ withdraw with no application (88ms)
 ✓ withdraw with application but too early (127ms)
 ✓ withdraw with application but still too early (181ms)
 ✓ withdraw (251ms)
 exit
 ✓ exit repeat (183ms)
 ✓ exit (140ms)
 ✓ exit all (302ms)
 cash flow
 updateBalance
 ✓ updateBalance (232ms)
 ✓ updateBalance (344ms)

 transferBalance
 ✓ normal (93ms)
 ✓ too much (95ms)
 ✓ transfer 0 (77ms)

 Contract: contractReader
 ✓ getGovParams (156ms)
 ✓ getPerpetualStorage (179ms)
 ✓ getAccountStorage (277ms)

 Contract: exchange-amm
 exceptions
 ✓ taker order is maker only (225ms)
 ✓ invalid trading lot size (305ms)
 ✓ taker overfilled (408ms)
 trades
 ✓ buy (3023ms)
 ✓ buy - success - pnl < 0, critical deposit amount (1975ms)
 ✓ buy - fail - pnl < 0, lower than critical deposit amount (3337ms)
 ✓ sell - success (2947ms)
 ✓ buy and sell - success (6139ms)

 Contract: exchange-user
 ✓ trade (752ms)
 ✓ soft fee (3860ms)
 ✓ soft fee - hit floor (6254ms)
 ✓ trade 1v1 (2677ms)
 ✓ close (4458ms)
 ✓ fail to match (970ms)
 ✓ maker only (606ms)
 ✓ invalid broker (730ms)
 ✓ invalid broker (726ms)
 ✓ invalid signature (996ms)
 exceptions
 ✓ wrong status (844ms)
 ✓ self trade (810ms)
 ✓ invalid side (826ms)
 ✓ market order cannot be maker (826ms)
 ✓ taker overfilled (1017ms)
 ✓ maker overfilled (1195ms)
 ✓ invalid trading lot size (1055ms)
 ✓ maker margin (2730ms)
 ✓ cancel order (64ms)
 ✓ taker margin (3027ms)
 ✓ dev safe (1963ms)
 ✓ no dev (1546ms)
 ✓ dev unsafe (2195ms)
 ✓ maker unsafe (4863ms)
 ✓ taker unsafe (5156ms)
 ✓ market order (2145ms)
 trades
 ✓ validate (2482ms)

 ✓ trade 1v1, trading size (3319ms)
 ✓ trade 1v1 (2608ms)
 ✓ broker balance (2636ms)
 ✓ broker unsafe (3559ms)
 ✓ dev unsafe (2329ms)
 ✓ validate (1948ms)
 ✓ cancel order (77ms)

 Contract: TestPerpGovernance
 exceptions
 ✓ amm required
 ✓ setGovernanceParameter exceptions (818ms)
 ✓ setGovernanceAddress exceptions (100ms)
 global config
 ✓ set governance value (124ms)
 ✓ key not exists (43ms)
 set parameters
 ✓ set dev address (69ms)
 ✓ set global config (161ms)
 ✓ set funding (108ms)
 ✓ set governance value (665ms)
 ✓ key not exists (58ms)
 ✓ not owner (43ms)
 status
 ✓ set governance value (611ms)
 ✓ key not exists (55ms)
 status
 ✓ beginGlobalSettlement (111ms)
 ✓ beginGlobalSettlement again (210ms)
 ✓ not owner (109ms)

 Contract: amm
 create amm
 ✓ should success (2252ms)
 trading
 ✓ addLiquidity - no position on removing liqudity (1966ms)
 ✓ removeLiquidity - no position on removing liqudity (5165ms)
 ✓ buy - success (2833ms)
 ✓ sell - success (2905ms)

 Contract: TestExtension
 trade
 ✓ buy (2318ms)
 ✓ sell (2404ms)

 Contract: testMath
 ✓ exceptions (307ms)
 R: 1851851851851851851666
 S: 1851851851851851853333
DIFF RANGE: 3333
 ✓ frac1 (82ms)
 ✓ frac2 neg (80ms)

 ✓ frac3 neg (86ms)
 ✓ roundHalfUp (158ms)
 ✓ unsigned wmul - trivial (149ms)
 ✓ unsigned wmul - overflow
 ✓ unsigned wmul - rounding (91ms)
 ✓ unsigned wdiv - trivial (78ms)
 ✓ unsigned wdiv - div by 0
 ✓ unsigned wdiv - rounding (134ms)
 ✓ signed wmul - trivial (486ms)
 ✓ signed wmul - overflow (49ms)
 ✓ signed wmul - rounding (423ms)
 ✓ signed wdiv - trivial (380ms)
 ✓ signed wdiv - div by 0
 ✓ signed wdiv - rounding (683ms)
 ✓ power (1291ms)
 ✓ log (911ms)
 ✓ logBase (585ms)
 ✓ ceil (122ms)
 ✓ max

 Contract: order
 ✓ test order (361ms)
 ✓ test order 2 (378ms)
 ✓ test order 3 (397ms)
 ✓ test order 3 (48ms)

 Contract: TestPerpetual
 tradePosition
 ✓ tradePosition - settlement (306ms)
 ✓ invalid side (59ms)
 ✓ transferCashBalance exceptions (93ms)
 liquidate
 ✓ partial liquidate - lot size (298ms)
 ✓ partial liquidate - nothing to liquidate (909ms)
 ✓ partial liquidate - add social loss (8163ms)
 ✓ liquidate - long pos (1083ms)
 ✓ liquidate - short pos (1101ms)
 ✓ liquidate 4 (1349ms)
 division
 ✓ :((1653ms)
 collateral - ether
 ✓ insurance fund (263ms)
 ✓ withdrawEther initial (392ms)
 ✓ withdrawEther whitelist (949ms)
 ✓ fallback (169ms)
 ✓ depositEther (673ms)
 ✓ depositEtherAndSetBroker - 0 (125ms)
 ✓ depositEtherAndSetBroker (150ms)
 collateral - erc20
 ✓ insurance fund (561ms)
 ✓ withdraw initial (476ms)
 ✓ withdraw - whitelist (1094ms)

 ✓ deposit (223ms)
 ✓ depositFor (335ms)
 ✓ accounts (238ms)
 ✓ deposit && broker - 0 (131ms)
 ✓ deposit && broker (415ms)
 ✓ withdraw - with no application (481ms)
 ✓ withdraw - deposit + withdraw (609ms)
 ✓ withdraw - pnl = positive, withdraw until IM (2261ms)
 miscs
 ✓ transfer balance (573ms)
 ✓ settle (526ms)
 settlement
 ✓ settle (168ms)
 ✓ settle at wrong stage (63ms)
 ✓ settle at wrong stage 2 (177ms)
 trade
 ✓ fill margin up to im (3289ms)
 ✓ fill margin up to im (2831ms)
 ✓ withdraw (3015ms)
 ✓ buy (4088ms)
 ✓ buy (2859ms)
 ✓ sell (4115ms)
 ✓ isIMSafe (1314ms)

 Contract: exchange-user-reverse
 ✓ validate (831ms)
 ✓ trade 1v1 (2739ms)
 case review
 ✓ inversePosition0409 (4318ms)

 Contract: amm
 ✓ buy - success (4070ms)
 ✓ privileges (596ms)

 Contract: TestPosition
 exceptions
 ✓ addSocialLossPerContractPublic (42ms)
 ✓ trade (199ms)
 miscs
 ✓ get position (302ms)
 ✓ position balance (666ms)
 ✓ funding loss long (356ms)
 ✓ funding loss short (346ms)
 ✓ total size (453ms)
 ✓ socialloss - long (433ms)
 ✓ socialloss - short (440ms)
 ✓ remargin - 0 (57ms)
 ✓ remargin - long (676ms)
 ✓ remargin - short (710ms)
 liquidate
 ✓ without loss - long (836ms)
 ✓ without loss - short (780ms)

 ✓ with loss and funding - long (965ms)
 ✓ with loss and funding - short (961ms)
 ✓ handleSocialLoss (289ms)
 ✓ handleSocialLoss 2 (269ms)
 ✓ calculateLiquidateAmount long (458ms)
 ✓ liquidate (1213ms)
 ✓ liquidate more - long (1161ms)
 ✓ liquidate more - short (1174ms)
 ✓ liquidate more 2 - long (1201ms)
 ✓ liquidate more 2 - short (1135ms)
 social loss
 ✓ set long loss (124ms)
 ✓ add short loss (141ms)
 position size, margin
 ✓ basic info (2604ms)
 ✓ buy (712ms)
 ✓ sell (706ms)
 ✓ buy 1 + sell 1 (804ms)
 ✓ buy 1 + sell 0.5 + sell 0.5 (1183ms)
 ✓ buy 1 + buy 1.5 + sell 3.5 (1071ms)
 pnl
 ✓ without loss - 0 (234ms)
 ✓ without loss - long (814ms)
 ✓ with loss - long (1907ms)
 ✓ with loss - short (1885ms)
 ✓ with loss and funding - long (1867ms)
 ✓ with loss and funding - short (1958ms)
 ✓ buy 1 + sell 0.5 (1567ms)
 withdraw
 ✓ applyForWithdrawalPublic (2014ms)

 Contract: one block
 AMM: one block transactions
 ✓ index updated between 2 trades (4927ms)
 ✓ index updated before liquidate (4375ms)

 Contract: signature
 ✓ should be an valid signature (EthSign) (56ms)
 ✓ should be an valid signature (EIP712) (46ms)
 ✓ should be an invalid signature (EthSign) (43ms)
 ✓ should be an invalid signature (EIP712) (42ms)
 ✓ should revert when using an invalid signature type
 ✓ isValidSignature (38ms)
 ✓ isValidSignature 712 (52ms)
 ✓ isValidSignature invalid (44ms)
1589366656
 ✓ expire at (38ms)
 ✓ generate signature (176ms)
 ✓ generate invalid signature (186ms)

 Contract: statement
 ✓ setCashBalance (1761ms)

 ✓ set socialloss on settling (2855ms)
 ✓ set balance on settling (2489ms)
 ✓ set balance on settling 2 (2652ms)
 ✓ set balance on settling 2 (2711ms)
 ✓ settling forbids (3493ms)
 ✓ settling allows (1965ms)
 ✓ settled forbids (3663ms)
 ✓ settled allows (2587ms)
 ✓ settling liquidate (2666ms)
 ✓ settled liquidate (2097ms)

 317 passing (16m)

--------------------------|----------|----------|----------|----------|--------------
--|
File | % Stmts | % Branch | % Funcs | % Lines |Uncovered
Lines |
--------------------------|----------|----------|----------|----------|--------------
--|
 exchange/ | 100 | 98.57 | 100 | 100 |
|
 Exchange.sol | 100 | 98.57 | 100 | 100 |
|
 global/ | 100 | 100 | 100 | 100 |
|
 GlobalConfig.sol | 100 | 100 | 100 | 100 |
|
 lib/ | 100 | 100 | 100 | 100 |
|
 LibEIP712.sol | 100 | 100 | 100 | 100 |
|
 LibMath.sol | 100 | 100 | 100 | 100 |
|
 LibOrder.sol | 100 | 100 | 100 | 100 |
|
 LibSignature.sol | 100 | 100 | 100 | 100 |
|
 LibTypes.sol | 100 | 100 | 100 | 100 |
|
 liquidity/ | 100 | 94.38 | 100 | 100 |
|
 AMM.sol | 100 | 93.9 | 100 | 100 |
|
 AMMGovernance.sol | 100 | 100 | 100 | 100 |
|
 perpetual/ | 99.47 | 94.3 | 100 | 99.46 |
|
 Brokerage.sol | 100 | 100 | 100 | 100 |
|
 Collateral.sol | 100 | 92.5 | 100 | 100 |
|

 Perpetual.sol | 100 | 92.5 | 100 | 100 |
|
 PerpetualGovernance.sol | 98 | 98.28 | 100 | 97.5 |
75 |
 Position.sol | 99.23 | 92.5 | 100 | 99.22 |
63 |
 proxy/ | 100 | 75 | 100 | 100 |
|
 PerpetualProxy.sol | 100 | 75 | 100 | 100 |
|
 reader/ | 100 | 100 | 100 | 100 |
|
 ContractReader.sol | 100 | 100 | 100 | 100 |
|
 token/ | 100 | 100 | 100 | 100 |
|
 ShareToken.sol | 100 | 100 | 100 | 100 |
|
--------------------------|----------|----------|----------|----------|--------------
--|
All files | 99.82 | 95.44 | 100 | 99.81 |
|
--------------------------|----------|----------|----------|----------|--------------
--|

Appendix 3 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for
performing the analysis contained in these reports (the “Reports”). The Reports may be distributed through other
means, including via ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not
guarantee the security of any particular project. This Report does not consider, and should not be interpreted as
considering or having any bearing on, the potential economics of a token, token sale or any other product,
service or other asset. Cryptographic tokens are emergent technologies and carry with them high levels of
technical risk and uncertainty. No Report provides any warranty or representation to any Third-Party in any
respect, including regarding the bugfree nature of code, the business model or proprietors of any such business
model, and the legal compliance of any such business. No third party should rely on the Reports in any way,
including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be
relied upon as investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the
absolute security of the project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and
published with their consent. The scope of our review is limited to a review of Solidity code and only the
Solidity code we note as being within the scope of our review within this report. The Solidity language itself
remains under development and is subject to unknown risks and flaws. The review does not extend to the
compiler layer, or any other areas beyond Solidity that could present security risks. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) – on its website. CD hopes
that by making these analyses publicly available, it can help the blockchain ecosystem develop technical best
practices in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links,
gain access to web sites operated by persons other than ConsenSys and CD. Such hyperlinks are provided for
your reference and convenience only, and are the exclusive responsibility of such web sites’ owners. You agree
that ConsenSys and CD are not responsible for the content or operation of such Web sites, and that ConsenSys
and CD shall have no liability to you or any other person or entity for the use of third party Web sites. Except as
described below, a hyperlink from this web Site to another web site does not imply or mean that ConsenSys and
CD endorses the content on that Web site or the operator or operations of that site. You are solely responsible for
determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and
shall have no liability whatsoever to any person or entity for the accuracy or completeness of any outcome
generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the
Report and is subject to change without notice. Unless indicated otherwise, by ConsenSys and CD.

