
Date December 2019

Auditors Alexander Wade

Dandelion Organizations Audit

1 Summary

2 Audit Scope

3 Key Observations/Recommendations

4 Security Speci�cation
4.1 Actors

4.2 Trust Model

5 Issues
5.1 TimeLock spam prevention can be bypassed Critical ✓ Addressed

5.2 Passing duplicate tokens to Redemptions and TokenRequest may have
unintended consequences Medium ✓ Addressed

5.3 The Delay app allows scripts to be paused even after execution time has
elapsed Medium ✓ Addressed

5.4 Misleading intentional miscon�guration possible through misuse of
newToken and newBaseInstance Medium ✓ Addressed

5.5 Delay.execute can re-enter and re-execute the same script twice Minor

✓ Addressed

5.6 Delay.cancelExecution should revert on a non-existent script id Minor

✓ Addressed

5.7 ID validation check missing for installDandelionApps Minor ✓ Addressed

6 Tool-Based Analysis
6.1 Ethlint

6.2 Surya

Appendix 1 - Disclosure

1 Summary

ConsenSys Diligence conducted a security audit of 1Hive’s Dandelion org template and
supporting apps. Dandelion orgs are a DAO template that function similarly to MolochDAO,

and are comprised of a suite of modular Aragon apps that can be used in any DAO.

2 Audit Scope

This audit covered the following �les:

File Name SHA-1 Hash

token-request-
app/contracts/lib/AddressArrayLib.sol

56997c6cfa74369087731aedcc4e032b29d400c6

redemptions-
app/contracts/lib/ArrayUtils.sol

6b184d37d5cca932da3d962a2fdc938389778a76

dandelion-org/contracts/DandelionOrg.sol bdfeab2a56304ce4bbbbd1a43cff49a2103732e0

dandelion-voting-
app/contracts/DandelionVoting.sol

3d131eb7a72d4a44e3ae387b7f12a255f38f5d6a

delay-app/contracts/Delay.sol cbc8a9cdca4c7cb8a3afecb33d36d2ef2324c903

redemptions-
app/contracts/Redemptions.sol

a26ba97e9c71367955a2b34c735ba3b1559cda26

time-lock-app/contracts/TimeLock.sol b30260b66f876ea0462fc72ee108e085594b1123

token-
oracle/contracts/TokenBalanceOracle.sol

0e16f0bbe4870234b264f824d943e08d50c9bc59

token-request-
app/contracts/TokenRequest.sol

2fa54ed301858564806416823d5539624a8418c8

token-request-
app/contracts/lib/UintArrayLib.sol

1226ee39e2eaca8320647bbaa0fcf2d577665ef6

The audit activities can be grouped into the following three broad categories:

1. Security: Identifying security related issues within the contract.

2. Architecture: Evaluating the system architecture through the lens of established
smart contract best practices.

3. Code quality: A full review of the contract source code. The primary areas of focus
include:

Correctness

Readability

Scalability

Code complexity

Quality of test coverage

3 Key Observations/Recommendations

A Dandelion organization functions similarly to MolochDAO:

The org has a native asset which represents “shares”. Holders of the asset are
conferred voting power within the org.

Shares are implemented via MiniMeToken , which tracks historical balances.

Shares are non-transferrable

Shares are minted when new members are accepted to the org

Shares are burned when redeemed for a proportion of the org’s assets

Members can vote to accept new members into the organization

Votes are executed in order of their creation, and between a vote’s passing and
execution is a grace period during which members of the org can exit their shares
(according to a few requirements)

Noteable differences:

Dandelion orgs are much more con�gurable

Dandelion proposals execute aragonOS EVMScripts, which are batches of
arbitrary calls to any destination. As such, Dandelion orgs can execute a much
wider range of actions through votes:

Modifying voting-speci�c parameters, like support required, minimum
quorum, number of blocks between votes, and vote execution delay period

Notably, vote duration (durationBlocks) cannot be changed

Managing permissions within the organization’s ACL

Managing registered applications within the organization

Modifying execution methods for executed proposals (via the
EVMScriptRegistry)

Modifying which assets are redeemable when burning shares

Modifying which assets are accepted by TokenRequest requests for entry
into the org

… and more.

MolochDAO is very minimalist. Dandelion’s complexity is much higher due to its
wider range of actions and con�gurations, as well as its highly modular design.

The wider range of actions allowed in Dandelion orgs allow the organization
to pass votes that radically change the structure and function of the
organization. It is possible to execute votes that do almost anything,
including dissolving the organization. Members of Dandelion orgs will need to
fully understand proposals, and carefully consider the entire range of actions
executed by a successful vote.

Dandelion orgs do not require an existing member to submit a proposal for a new
member to join. Instead, a new member can create a request to join (via
TokenRequest.createTokenRequest).

Requests offer a deposit of tokens in exchange for the minting of new org
tokens

The requesting user can cancel their request at any point before its
�nalization. Cancelled requests involve a refund of the deposited tokens.

Requests can be �nalized through the passing of a vote in
DandelionVoting . On �nalization, the requestor’s deposited tokens are

transferred to the org’s Vault, and the TokenManager mints shares for the
requestor.

Discouraging spam in MolochDAO is implemented by requiring a 10 ETH deposit
from the member sponsoring a request to join. In Dandelion, spam is discouraged
via the TimeLock app, which requires anyone creating a vote to lock up a
speci�ed token for a con�gurable amount of time. The more votes created by a
single address before their timelocked tokens are released, the higher the spam
penalty is for each vote. The increase in spam penalty is calculated using the
con�gurable spamPenaltyFactor .

DandelionVoting introduces a con�gurable voting quorum and support
threshhold, while MolochDAO requires only a simple majority to pass a vote.

4 Security Speci�cation

This section describes, from a security perspective, some of the expected behavior of the
system under audit. It is not a substitute for documentation. The purpose of this section is
to identify speci�c security properties that were investigated by the audit team.

4.1 Actors

The relevant actors are as follows:

Deployer: Responsible for instantiating the organization with its base settings via
DandelionOrg .

Organization Member: Holds non-transferrable org tokens, which represent a
redeemable portion of the org’s assets. Responsible for voting on new proposals to
carry out a wide range of actions within the org.

Requesting Member: Creates a request to be minted org tokens via TokenRequest .
Can cancel request before �nalization. On �nalization, deposit tokens are moved to the
org’s vault and the requesting member is minted an amount of org tokens.

4.2 Trust Model

In any smart contract system, it’s important to identify what trust is expected/required
between various actors. For this audit, we established the following trust model:

The parameters set up during instantiation (newTokenAndBaseInstance and
installDandelionApps) are important to the behavior of many critical systems in the

org:
_redemptionsRedeemableTokens describes the redeemable assets held by the

organization. The Deployer should ensure that this is a list of valid ERC20 tokens
(optionally including “ETH” by using address(0x00))

_tokenRequestAcceptedDepositTokens describes the tokens accepted for
deposit by requesting members. The Deployer should ensure that this is a list of
valid ERC20 tokens (optionally including “ETH” by using address(0x00))

The Deployer should be careful when including tokens in this list that are not
included in _redemptionsRedeemableTokens . If tokens are deposited that
are not directly redeemable, they must �rst be added to Redemptions by
way of a vote.

Additionally, TokenRequest.acceptedDepositTokens and
Redemptions.redeemableTokens have different maximum allowed sizes.

The Deployer should note that a token must be redeemable in order for org
members to withdraw it.

_timelockToken is the address of the token users will lock when creating votes
via TimeLock.forward . It is con�gured with an array of settings (uint[3]

_timelockSettings), which corresponds to the duration of the lock, the base
amount of tokens to lock, and the factor by which the successive lock penalty

increases. It is crucial that each org choose reasonable settings for TimeLock , as
successful spamming of DandelionVoting.newVote has the potential to halt
progress in an org due to longer and longer delays between relevant votes.

Additionally, the token chosen for TimeLock should be non-transferrable for
maximum spam penalty e�cacy.

uint64[5] _votingSettings corresponds to settings in DandelionVoting . It is
crucial that the Deployer choose reasonable values for their org’s purpose:

supportRequiredPct is the percent of yeas in all casted votes required to
pass a vote (expressed as a proportion of 10**18)

minAcceptQuorumPct is the percent of yeas in the total possible votes
required to pass a vote (expressed as a proportion of 10**18)

durationBlocks is the number of blocks a vote will be open for voters.
Deployers should note that of all org settings, this value is not changeable.
Therefore, it is very important to choose a reasonable value.

bufferBlocks is the number of blocks between the start of each
subsequent vote.

executionDelayBlocks is the number of blocks that consist of the delay
period between a vote’s passing and its actual execution.

The relative security of an organization’s assets depends heavily on the careful
consideration of the rami�cations of each vote by the org’s members. With great
power comes great responsibility; batched administrative actions within an org are
able to fundamentally change the behavior of many aspects of the org and demand
careful attention before being rati�ed.

Orgs can be extended through votes by the addition of new apps. These new apps will
undoutedly have their own set of permissions and security properties and should be
carefully reviewed by voters to ensure maximum compatibility with the goals of the
existing org.

Dandelion orgs and their supporting apps make heavy use of aragonOS. While
aragonOS has been audited, a full review of the system is not in scope for this audit.

5 Issues

Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best
practices or readability. Code maintainers should use their own judgment as to
whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities. These should
be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly exploitable or may
require certain conditions in order to be exploited. All major issues should be
addressed.

Critical issues are directly exploitable security vulnerabilities that need to be �xed.

5.1 TimeLock spam prevention can be bypassed Critical ✓ Addressed

Resolution

This was addressed in commit aa6fc49fbf3230d7f02956b33a3150c6885ee93f by
parsing the input evm script and ensuring only a single external call is made.
Additionally, commit 453179e98159413d38196b6a5373cdd729483567 added
TimeLock and token to the script runner blacklist.

Description

The TimeLock app is a forwarder that requires users to lock some token before forwarding
an EVM callscript. Its purpose is to introduce a “spam penalty” to hamper repeat actions
within an Aragon org. In the context of a Dandelion org, this spam penalty is meant to stop
users from repeatedly creating votes in DandelionVoting , as subsequent votes are
buffered by a con�gurable number of blocks (DandelionVoting.bufferBlocks). Spam
prevention is important, as the more votes are buffered, the longer it takes before “non-
spam” votes are able to be executed.

By allowing arbitrary calls to be executed, the TimeLock app opens several potential
vectors for bypassing spam prevention.

Examples

Using a callscript to transfer locked tokens to the sender

By constructing a callscript that executes a call to the lock token address, the sender
execute calls to the lock token on behalf of TimeLock . Any function can be executed,
making it possible to not only transfer “locked” tokens back to the sender, but also steal
other users’ locked tokens by way of transfer .

https://github.com/1Hive/time-lock-app/pull/84/commits/aa6fc49fbf3230d7f02956b33a3150c6885ee93f
https://github.com/1Hive/time-lock-app/pull/84/commits/453179e98159413d38196b6a5373cdd729483567

Using a batched callscript to call DandelionVoting.newVote repeatedly

Callscripts can be batched, meaning they can execute multiple calls before �nishing. Within
a Dandelion org, the spam prevention mechanism is used for the
DandelionVoting.newVote function. A callscript that batches multiple calls to this

function can execute newVote several times per call to TimeLock.forward . Although
multiple new votes are created, only one spam penalty is incurred, making it trivial to extend
the buffer imposed on “non-spam” votes.

Using a callscript to re-enter TimeLock and forward or withdrawAllTokens to
itself

A callscript can be used to re-enter TimeLock.forward , as well as any other TimeLock
functions. Although this may not be directly exploitable, it does seem unintentional that
many of the TimeLock contract functions are accessible to itself in this manner.

Recommendation

1. Add the TimeLock contract’s own address to the evmscript blacklist

2. Add the TimeLock lock token address to the evmscript blacklist

3. To �x spamming through batched callscripts, one option is to have users pass in a
destination and calldata, and manually perform a call. Alternatively, CallsScript can
be forked and altered to only execute a single external call to a single destination.

5.2 Passing duplicate tokens to Redemptions and TokenRequest
may have unintended consequences Medium ✓ Addressed

Resolution

This was addressed in Redemptions commit
2b0034206a5b9cdf239da7a51900e89d9931554f by checking
redeemableTokenAdded[token] == false for each subsequent token added during

initialization. Note that ordering is not enforced.

Additionally, the issue in TokenRequest was addressed in commit
eb4181961093439f142f2e74eb706b7f501eb5c0 by requiring that each subsequent

https://github.com/1Hive/redemptions-app/pull/122/commits/2b0034206a5b9cdf239da7a51900e89d9931554f
https://github.com/1Hive/token-request-app/pull/103/commits/eb4181961093439f142f2e74eb706b7f501eb5c0

token added during initialization has a value strictly greater than the previous token
added.

Description

Both Redemptions and TokenRequest are initialized with a list of acceptable tokens to
use with each app. For Redemptions , the list of tokens corresponds to an organization’s
treasury assets. For TokenRequest , the list of tokens corresponds to tokens accepted for
payment to join an organization. Neither contract makes a uniqueness check on input
tokens during initialization, which can lead to unintended behavior.

Examples

In Redemptions , each of an organization’s assets are redeemed according to the
sender’s proportional ownership in the org. The redemption process iterates over the
redeemableTokens list, paying out the sender their proportion of each token listed:

code/redemptions-app/contracts/Redemptions.sol:L112-L121

If a token address is included more than once, the sender will be paid out more than once,
potentially earning many times more than their proportional share of the token.

In TokenRequest , this behavior does not allow for any signi�cant deviation from
expected behavior. It was included because the initialization process is similar to that
of Redemptions .

Recommendation

for (uint256 i = 0; i < redeemableTokens.length; i++) {
 vaultTokenBalance = vault.balance(redeemableTokens[i]);

 redemptionAmount = _burnableAmount.mul(vaultTokenBalance).div(burnableToke
 totalRedemptionAmount = totalRedemptionAmount.add(redemptionAmount);

 if (redemptionAmount > 0) {
 vault.transfer(redeemableTokens[i], msg.sender, redemptionAmount);
 }
}

During initialization in both apps, check that input token addresses are unique. One simple
method is to require that token addresses are submitted in ascending order, and that each
subsequent address added is greater than the one before.

5.3 The Delay app allows scripts to be paused even after execution
time has elapsed Medium ✓ Addressed

Resolution

This was addressed in commit 46d8fa414cc3e68c68a5d9bc1174be5f32970611 by
requiring that the current timestamp is before the delayed script’s execution time.

Description

The Delay app is used to con�gure a delay between when an evm script is created and
when it is executed. The entry point for this process is Delay.delayExecution , which
stores the input script with a future execution date:

code/delay-app/contracts/Delay.sol:L153-L162

An auxiliary capability of the Delay app is the ability to “pause” the delayed script, which
sets the script’s pausedAt value to the current block timestamp:

code/delay-app/contracts/Delay.sol:L80-L85

function _delayExecution(bytes _evmCallScript) internal returns (uint256) {
 uint256 delayedScriptIndex = delayedScriptsNewIndex;
 delayedScriptsNewIndex++;

 delayedScripts[delayedScriptIndex] = DelayedScript(getTimestamp64().add(ex

 emit DelayedScriptStored(delayedScriptIndex);

 return delayedScriptIndex;
}

https://github.com/1Hive/delay-app/pull/39/commits/46d8fa414cc3e68c68a5d9bc1174be5f32970611

A paused script cannot be executed until resumeExecution is called, which extends the
script’s executionTime by the amount of time paused. Essentially, the delay itself is
paused:

code/delay-app/contracts/Delay.sol:L91-L100

A delayed script whose execution time has passed and is not currently paused should be
able to be executed via the execute function. However, the pauseExecution function still
allows the aforementioned script to be paused, halting execution.

Recommendation

Add a check to pauseExecution to ensure that execution is not paused if the script’s
execution delay has already transpired.

function pauseExecution(uint256 _delayedScriptId) external auth(PAUSE_EXECUTIO
 require(!_isExecutionPaused(_delayedScriptId), ERROR_CAN_NOT_PAUSE);
 delayedScripts[_delayedScriptId].pausedAt = getTimestamp64();

 emit ExecutionPaused(_delayedScriptId);
}

function resumeExecution(uint256 _delayedScriptId) external auth(RESUME_EXECUT
 require(_isExecutionPaused(_delayedScriptId), ERROR_CAN_NOT_RESUME);
 DelayedScript storage delayedScript = delayedScripts[_delayedScriptId];

 uint64 timePaused = getTimestamp64().sub(delayedScript.pausedAt);
 delayedScript.executionTime = delayedScript.executionTime.add(timePaused);
 delayedScript.pausedAt = 0;

 emit ExecutionResumed(_delayedScriptId);
}

5.4 Misleading intentional miscon�guration possible through misuse
of newToken and newBaseInstance Medium ✓ Addressed

Resolution

This was addressed in commit b68d89ab0deb22161987e19d1ff0bb9d7303f0a9 by
making newToken and newBaseInstance internal. A later commit addressed an
invalid DandelionVoting import statement.

Description

The instantiation process for a Dandelion organization requires two separate external calls
to DandelionOrg . There are two primary functions: installDandelionApps , and
newTokenAndBaseInstance .

installDandelionApps relies on cached results from prior calls to
newTokenAndBaseInstance and completes the initialization step for a Dandelion org.

newTokenAndBaseInstance is a wrapper around two publicly accessible functions:
newToken and newBaseInstance . Called together, the functions: * Deploy a new
MiniMeToken used to represent shares in an organization, and cache the address of the

created token:

code/dandelion-org/contracts/DandelionOrg.sol:L128-L137

Create a new dao instance using Aragon’s BaseTemplate contract:

code/dandelion-org/contracts/DandelionOrg.sol:L139-L160

/**
* @dev Create a new MiniMe token and save it for the user
* @param _name String with the name for the token used by share holders in the
* @param _symbol String with the symbol for the token used by share holders in
*/
function newToken(string memory _name, string memory _symbol) public returns (
 MiniMeToken token = _createToken(_name, _symbol, TOKEN_DECIMALS);
 _saveToken(token);
 return token;
}

/**
* @dev Deploy a Dandelion Org DAO using a previously saved MiniMe token
* @param _id String with the name for org, will assign `[id].aragonid.eth`

https://github.com/1Hive/dandelion-org/pull/31/commits/b68d89ab0deb22161987e19d1ff0bb9d7303f0a9

Set up prepackaged Aragon apps, like Vault , TokenManager , and Finance :

code/dandelion-org/contracts/DandelionOrg.sol:L162-L182

* @param _holders Array of token holder addresses
* @param _stakes Array of token stakes for holders (token has 18 decimals, mul
* @param _useAgentAsVault Boolean to tell whether to use an Agent app as a mor
*/
function newBaseInstance(
 string memory _id,
 address[] memory _holders,
 uint256[] memory _stakes,
 uint64 _financePeriod,
 bool _useAgentAsVault
)
 public
{
 _validateId(_id);
 _ensureBaseSettings(_holders, _stakes);

 (Kernel dao, ACL acl) = _createDAO();
 _setupBaseApps(dao, acl, _holders, _stakes, _financePeriod, _useAgentAsVau
}

function _setupBaseApps(
 Kernel _dao,
 ACL _acl,
 address[] memory _holders,
 uint256[] memory _stakes,
 uint64 _financePeriod,
 bool _useAgentAsVault
)
 internal
{
 MiniMeToken token = _getToken();
 Vault agentOrVault = _useAgentAsVault ? _installDefaultAgentApp(_dao) : _i
 TokenManager tokenManager = _installTokenManagerApp(_dao, token, TOKEN_TRA
 Finance finance = _installFinanceApp(_dao, agentOrVault, _financePeriod ==

Note that newToken and newBaseInstance can be called separately. The token created in
newToken is cached in _saveToken , which overwrites any previously-cached value:

code/dandelion-org/contracts/DandelionOrg.sol:L413-L417

Cached tokens are retrieved in _getToken :

code/dandelion-org/contracts/DandelionOrg.sol:L441-L447

By exploiting the overwriteable caching mechanism, it is possible to intentionally
miscon�gure Dandelion orgs.

Examples

installDandelionApps uses _getToken to associate a token with the
DandelionVoting app. The value returned from _getToken depends on the sender’s

previous call to newToken , which overwrites any previously-cached value. The steps for
intentional miscon�guration are as follows:

 _mintTokens(_acl, tokenManager, _holders, _stakes);
 _saveBaseApps(_dao, finance, tokenManager, agentOrVault);
 _saveAgentAsVault(_dao, _useAgentAsVault);

}

function _saveToken(MiniMeToken _token) internal {
 DeployedContracts storage senderDeployedContracts = deployedContracts[msg.

 senderDeployedContracts.token = address(_token);
}

function _getToken() internal returns (MiniMeToken) {
 DeployedContracts storage senderDeployedContracts = deployedContracts[msg.
 require(senderDeployedContracts.token != address(0), ERROR_MISSING_TOKEN_C

 MiniMeToken token = MiniMeToken(senderDeployedContracts.token);
 return token;
}

1. Sender calls newTokenAndBaseInstance , creating token m0 and DAO A .
The TokenManager app in A is automatically con�gured to be the controller of
m0 .

m0 is cached using _saveToken .

DAO A apps are cached for future use using _saveBaseApps and
_saveAgentAsVault .

2. Sender calls newToken , creating token m1 , and overwriting the cache of m0 .
Future calls to _getToken will retrieve m1 .

The DandelionOrg contract is the controller of m1 .

3. Sender calls installDandelionApps , which installs Dandelion apps in DAO A
The DandelionVoting app is con�gured to use the current cached token, m1 ,
rather than the token associated with A.TokenManager , m0

Further calls to newBaseInstance and installDandelionApps create DAO B , populate it
with Dandelion apps, and assign B.TokenManager as the controller of the earlier
DandelionVoting app token, m0 .

Many different miscon�gurations are possible, and some may be underhandedly abusable.

Recommendation

Make newToken and newBaseInstance internal so they are only callable via
newTokenAndBaseInstance .

5.5 Delay.execute can re-enter and re-execute the same script
twice Minor ✓ Addressed

Resolution

This was addressed in commit f049e978f93765e27783a3ecac4830498bb779ba by
deleting the delayed script before it is run. 1Hive elected to keep an empty script
blacklist in order to allow delayed actions to be taken on the Delay app.

Description

https://github.com/1Hive/delay-app/pull/39/commits/f049e978f93765e27783a3ecac4830498bb779ba

Delay.execute does not follow the “checks-effects-interactions” pattern, and deletes a
delayed script only after the script is run. Because the script being run executes arbitrary
external calls, a script can be created that re-enters Delay and executes itself multiple
times before being deleted:

code/delay-app/contracts/Delay.sol:L112-L123

Recommendation

Add the Delay contract address to the runScript blacklist, or delete the delayed script
from storage before it is run.

/**
* @notice Execute the script with ID `_delayedScriptId`
* @param _delayedScriptId The ID of the script to execute
*/
function execute(uint256 _delayedScriptId) external {
 require(canExecute(_delayedScriptId), ERROR_CAN_NOT_EXECUTE);
 runScript(delayedScripts[_delayedScriptId].evmCallScript, new bytes(0), ne

 delete delayedScripts[_delayedScriptId];

 emit ExecutedScript(_delayedScriptId);
}

5.6 Delay.cancelExecution should revert on a non-existent script id
Minor ✓ Addressed

Resolution

This was addressed in commit d99c94f5138a9af1fd5f0cd6990c140b46a55925 by
adding the scriptExists(_delayedScriptId) modi�er to cancelExecution .

Description

cancelExecution makes no existence check on the passed-in script ID, clearing its
storage slot and emitting an event:

https://github.com/1Hive/delay-app/pull/39/commits/d99c94f5138a9af1fd5f0cd6990c140b46a55925

code/delay-app/contracts/Delay.sol:L102-L110

Recommendation

Add a check that the passed-in script exists.

/**
* @notice Cancel script execution with ID `_delayedScriptId`
* @param _delayedScriptId The ID of the script execution to cancel
*/
function cancelExecution(uint256 _delayedScriptId) external auth(CANCEL_EXECUT
 delete delayedScripts[_delayedScriptId];

 emit ExecutionCancelled(_delayedScriptId);
}

5.7 ID validation check missing for installDandelionApps Minor
✓ Addressed

Resolution

This was addressed in commit 8d1ecb1bc892d6ea1d34c7234e35de031db2bebd by
removing the _id parameter from newTokenAndBaseInstance and
newBaseInstance , and adding a validation check to installDandelionApps .

Description

DandelionOrg allows users to kickstart an Aragon organization by using a dao template.
There are two primary functions to instantiate an org: newTokenAndBaseInstance , and
installDandelionApps . Both functions accept a parameter, string _id , meant to

represent an ENS subdomain that will be assigned to the new org during the instantiation
process. The two functions are called independently, but depend on each other.

In newTokenAndBaseInstance , a sanity check is performed on the _id parameter, which
ensures the _id length is nonzero:

code/dandelion-org/contracts/DandelionOrg.sol:L155

https://github.com/1Hive/dandelion-org/pull/31/commits/8d1ecb1bc892d6ea1d34c7234e35de031db2bebd

_validateId(_id);

Note that the value of _id is otherwise unused in newTokenAndBaseInstance .

In installDandelionApps , this check is missing. The check is only important in this
function, since it is in installDandelionApps that the ENS subdomain registration is
actually performed.

Recommendation

Use _validateId in installDandelionApps rather than newTokenAndBaseInstance .
Since the _id parameter is otherwise unused in newTokenAndBaseInstance , it can be
removed.

Alternatively, the value of the submitted _id could be cached between calls and validated
in newTokenAndBaseInstance , similarly to newToken .

6 Tool-Based Analysis

Several tools were used to perform automated analysis of the reviewed contracts. These
issues were reviewed by the audit team, and relevant issues are listed in the Issue Details
section.

6.1 Ethlint

Ethlint is an open source project for linting Solidity code. Only
security-related issues were reviewed by the audit team.

Below is the raw output of the Ethlint vulnerability scan:

$ solium -V
Solium version 1.2.5
$ solium -d .

dandelion-org/contracts/DandelionOrg.sol
 86:1 warning Line contains trailing whitespace no-trailing-
 226:8 warning Line exceeds the limit of 145 characters max-len

https://www.ethlint.com/

6.2 Surya

Surya is a utility tool for smart contract systems. It provides a number of visual outputs
and information about the structure of smart contracts. It also supports querying the
function call graph in multiple ways to aid in the manual inspection and control �ow
analysis of contracts.

Below is a complete list of functions with their visibility and modi�ers:

Contracts Description Table

dandelion-voting-app/contracts/DandelionVoting.sol
 272:8 warning Line exceeds the limit of 145 characters max-len

token-request-app/contracts/TokenRequest.sol
 62:4 warning Line exceeds the limit of 145 characters
 104:1 warning Line contains trailing whitespace

token-request-app/contracts/lib/UintArrayLib.sol
 6:3 error Only use indent of 4 spaces. indentation

✖ 1 error, 5 warnings found.

Contract Type Bases

└ Function Name Visibility Mutability

AddressArrayLib Library

└ deleteItem Internal 🔒 🛑

└ contains Internal 🔒 🛑

ArrayUtils Library

└ deleteItem Internal 🔒 🛑

DandelionOrg Implementation BaseTemplate

└ <Constructor> Public ❗ 🛑

└ newTokenAndBaseInstance External ❗ 🛑

Contract Type Bases

└ installDandelionApps External ❗ 🛑

└ newToken Public ❗ 🛑

└ newBaseInstance Public ❗ 🛑

└ _setupBaseApps Internal 🔒 🛑

└ _installDandelionApps Internal 🔒 🛑

└ _installDandelionVotingApp Internal 🔒 🛑

└ _installDandelionVotingApp Internal 🔒 🛑

└ _createDandelionVotingPermissions Internal 🔒 🛑

└ _installRedemptionsApp Internal 🔒 🛑

└ _createRedemptionsPermissions Internal 🔒 🛑

└ _installTokenRequestApp Internal 🔒 🛑

└ _createTokenRequestPermissions Internal 🔒 🛑

└ _installTimeLockApp Internal 🔒 🛑

└ _installTimeLockApp Internal 🔒 🛑

└ _createTimeLockPermissions Internal 🔒 🛑

└ _installTokenBalanceOracle Internal 🔒 🛑

└ _createTokenBalanceOraclePermissions Internal 🔒 🛑

└ _setupBasePermissions Internal 🔒 🛑

└ _setupDandelionPermissions Internal 🔒 🛑

└ _saveToken Internal 🔒 🛑

└ _saveBaseApps Internal 🔒 🛑

└ _saveAgentAsVault Internal 🔒 🛑

└ _getDao Internal 🔒 🛑

└ _getToken Internal 🔒 🛑

└ _getBaseApps Internal 🔒 🛑

└ _getAgentAsVault Internal 🔒 🛑

└ _clearDeployedContracts Internal 🔒 🛑

Contract Type Bases

└ _ensureBaseAppsDeployed Internal 🔒 🛑

└ _ensureBaseSettings Private 🔐

└ _ensureDandelionSettings Private 🔐 🛑

└ _registerApp Private 🔐 🛑

└ _setOracle Private 🔐 🛑

└ _paramsTo256 Private 🔐 🛑

DandelionVoting Implementation
IForwarder,
IACLOracle,
AragonApp

└ initialize External ❗ 🛑

└ changeSupportRequiredPct External ❗ 🛑

└ changeMinAcceptQuorumPct External ❗ 🛑

└ changeBufferBlocks External ❗ 🛑

└ changeExecutionDelayBlocks External ❗ 🛑

└ newVote External ❗ 🛑

└ vote External ❗ 🛑

└ executeVote External ❗ 🛑

└ isForwarder External ❗

└ forward Public ❗ 🛑

└ canForward Public ❗

└ canPerform External ❗

└ canExecute Public ❗

└ canVote Public ❗

└ getVote Public ❗

└ getVoterState Public ❗

└ _newVote Internal 🔒 🛑

└ _vote Internal 🔒 🛑

Contract Type Bases

└ _canExecute Internal 🔒

└ _votePassed Internal 🔒

└ _canVote Internal 🔒

└ _voterStake Internal 🔒

└ _isVoteOpen Internal 🔒

└ _isValuePct Internal 🔒

Delay Implementation
AragonApp,
IForwarder

└ initialize External ❗ 🛑

└ setExecutionDelay External ❗ 🛑

└ delayExecution External ❗ 🛑

└ isForwarder External ❗

└ pauseExecution External ❗ 🛑

└ resumeExecution External ❗ 🛑

└ cancelExecution External ❗ 🛑

└ execute External ❗ 🛑

└ canExecute Public ❗

└ canForward Public ❗

└ forward Public ❗ 🛑

└ _isExecutionPaused Internal 🔒

└ _delayExecution Internal 🔒 🛑

Redemptions Implementation AragonApp

└ initialize External ❗ 🛑

└ addRedeemableToken External ❗ 🛑

└ removeRedeemableToken External ❗ 🛑

└ redeem External ❗ 🛑

Contract Type Bases

└ getRedeemableTokens External ❗

└ getToken External ❗

└ getETHAddress External ❗

TimeLock Implementation
AragonApp,
IForwarder,

IForwarderFee

└ initialize External ❗ 🛑

└ changeLockDuration External ❗ 🛑

└ changeLockAmount External ❗ 🛑

└ changeSpamPenaltyFactor External ❗ 🛑

└ withdrawAllTokens External ❗ 🛑

└ withdrawTokens External ❗ 🛑

└ forwardFee External ❗

└ isForwarder External ❗

└ canForward Public ❗

└ forward Public ❗ 🛑

└ getWithdrawLocksCount Public ❗

└ getSpamPenalty Public ❗

└ _withdrawTokens Internal 🔒 🛑

TokenBalanceOracle Implementation
AragonApp,
IACLOracle

└ initialize External ❗ 🛑

└ setToken External ❗ 🛑

└ setMinBalance External ❗ 🛑

└ canPerform External ❗

TokenRequest Implementation AragonApp

└ initialize External ❗ 🛑

Legend

Symbol Meaning

🛑 Function can modify state

💵 Function is payable

Appendix 1 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the
“Clients”) for performing the analysis contained in these reports (the “Reports”). The Reports
may be distributed through other means, including via ConsenSys publications and other
distributions.

The Reports are not an endorsement or indictment of any particular project or team, and
the Reports do not guarantee the security of any particular project. This Report does not
consider, and should not be interpreted as considering or having any bearing on, the

Contract Type Bases

└ setTokenManager External ❗ 🛑

└ setVault External ❗ 🛑

└ addToken External ❗ 🛑

└ removeToken External ❗ 🛑

└ createTokenRequest External ❗ 💵

└ refundTokenRequest External ❗ 🛑

└ �naliseTokenRequest External ❗ 🛑

└ getAcceptedDepositTokens Public ❗

└ getTokenRequest Public ❗

└ getToken Public ❗ 🛑

UintArrayLib Library

└ deleteItem Internal 🔒 🛑

potential economics of a token, token sale or any other product, service or other asset.
Cryptographic tokens are emergent technologies and carry with them high levels of
technical risk and uncertainty. No Report provides any warranty or representation to any
Third-Party in any respect, including regarding the bugfree nature of code, the business
model or proprietors of any such business model, and the legal compliance of any such
business. No third party should rely on the Reports in any way, including for the purpose of
making any decisions to buy or sell any token, product, service or other asset. Speci�cally,
for the avoidance of doubt, this Report does not constitute investment advice, is not
intended to be relied upon as investment advice, is not an endorsement of this project or
team, and it is not a guarantee as to the absolute security of the project. CD owes no duty
to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely
for Clients and published with their consent. The scope of our review is limited to a review
of Solidity code and only the Solidity code we note as being within the scope of our review
within this report. The Solidity language itself remains under development and is subject to
unknown risks and �aws. The review does not extend to the compiler layer, or any other
areas beyond Solidity that could present security risks. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) – on its
website. CD hopes that by making these analyses publicly available, it can help the
blockchain ecosystem develop technical best practices in this rapidly evolving area of
innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other
computer links, gain access to web sites operated by persons other than ConsenSys and
CD. Such hyperlinks are provided for your reference and convenience only, and are the
exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are
not responsible for the content or operation of such Web sites, and that ConsenSys and CD
shall have no liability to you or any other person or entity for the use of third party Web
sites. Except as described below, a hyperlink from this web Site to another web site does
not imply or mean that ConsenSys and CD endorses the content on that Web site or the
operator or operations of that site. You are solely responsible for determining the extent to
which you may use any content at any other web sites to which you link from the Reports.
ConsenSys and CD assumes no responsibility for the use of third party software on the
Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date
appearing on the Report and is subject to change without notice. Unless indicated
otherwise, by ConsenSys and CD.

