CONSENSYS

Diligence

Vyper Security Review

1 Scope Date October 2019

2 Executive Summary Reviewers Steve Marx, Todd Proebsting

3 Compiler Decomposition
4 Abstract Syntax Trees (AST)
5 Separate Type Checking Pass

6 Intermediate Representation (LLL)

7 Needed Specifications
o 7.1 Language Specification

o 7.2 Interface Specifications

8 Bytecode Verification
o 8.1 “Valency” in the code generator

9 Auditable Code
o 9.1 Refactor Long Functions

o 9.2 Use Static Typing
o 9.3 Avoid Code Repetition

10 Issues

Appendix 1 - Disclosure

1 Scope
ConsenSys Diligence conducted a preliminary review of beta 13 of the Vyper compiler. The

goal of this review was to identify what work remains before the compiler is ready for a full
security audit.

2 Executive Summary

Auditing code requires comparing the code to expected behavior. For a compiler, the
expected behavior is determined by the source language specification and the target

machine. To confidently audit a Vyper compiler, a complete and precise Vyper specification
is needed.

The Vyper compiler is currently decomposed into three passes: a small pass that
translates Python abstract syntax trees to Vyper ASTs, a large pass that translates Vyper
ASTs to LLL intermediate representation, and a small pass that translates LLL to EVM
bytecode. The AST—LLL pass is too big and complex to be confidently audited. We
recommend decomposing it into smaller passes with well-defined interfaces. This
decomposition will allow independent auditing of each pass.

During the review, we found a number of bugs, which are described at the end of this
document.

3 Compiler Decomposition

Logically, compilation can be viewed as a sequence of transformations that start with
source code and end with binary code, with different intermediate representations between
each pass. A canonical (non-optimizing) compiler decomposition might be the following:

1. Lexical Analysis: Transforms raw characters into “tokens”. E.g., keywords, variables,
operators, etc.

2. Parsing: Transforms tokens into abstract syntax trees (ASTs). The tree nodes
represent the constructs of the language. E.g., for-loops, if-then-elses, function
declarations, expressions.

3. Semantic Analysis: Determines all the semantic information (a.k.a. “meaning”) of the
represented program. This pass will typically do many of the following:
1. Track the declaration and uses of every identifier in the program, and any
necessary information about each identifier. E.g., the type of variables, the scope
of variables, etc.

2. Determine the types of all expressions, including any implicit type conversions.
Type checking for expressions includes inferring result types based on operand
types, checking that literals conform to Vyper or EVM limitations, checking
variable/name usage, etc. (parser/expr.py reports errors in 67 different
locations.)

3. Annotate the ASTs with the type information that is computed. For instance, after

checking that the types of the left and right operands of an ADD node can be
added together, it might annotate the ADD node with the type it will compute.

4. Make explicit what was implicit. Semantic analysis might modify the AST to make
previously implicit operations explicit. For instance, it may add a type conversion
to widen an integer value that is an operand to an ADD where the other operand is
wider. Similarly, it might tag a literal value with how it is going to be used. For
instance, it might tag the literal 7 asa uint256 if itis the operand of an ADD
where the other operand is known to be a uint256 .

4. Constant Folding: Transforms the ASTs based on operations that can be computed at
compile time. E.g., 1+2 can be replaced with 3 .

5. Intermediate Representation (IR) Generation: Translates all of the fully analyzed (and
annotated) ASTs into a chosen IR.

6. Code Generation: Translate the IR into the target code (i.e., EVM bytecode).

The benefit of decomposition is that each pass can be analyzed independently. Of course,
this requires that the data structures consumed and generated by each pass be well-
defined. If we ignore lexical analysis (which is done for Vyper by the Python parser) the
decomposition above requires only two well-defined data structures: the AST and the IR.
(The data structure that represents types will, of course, annotate the AST.)

4 Abstract Syntax Trees (AST)

The Vyper compiler's AST is not an abstract syntax tree for Vyper—it is an AST for Python.
The Vyper compiler translates the Python compiler-generated AST nodes into its own AST
nodes, but those nodes are almost perfect replicas of the original nodes. Thus, the Vyper
compiler is burdened with interpreting Python-like abstract syntax as if it were Vyper
syntax.

A good example of this is the AST nodes for Vyper's struct and contract constructs.
There arent any. Instead, Vyper overloads Python's class AST node to represent structs
and classes, distinguishing them with a special field.

There are many examples of where Python's AST is used to (unnaturally) represent Vyper
syntax:

1. Using Python function call ASTs to represent the following Vyper constructs:
1. events

2. type modifiers (constant , public)
3. type units (e.g. uint256(wei))

4. maps

2. Using Python class ASTs to represent:
1. structs

2. contracts
3. Using Python's general for-loop AST to represent Vyper's restricted for-loop

4. Using Python's annotated assignment AST to represent

1. implements
2. type declarations
3. custom units declarations

5. Using Python's decorator AST for Vyper's function modifiers (@nonreentrant ,
@public , etc.)

5 Separate Type Checking Pass

Vyper's static type system is sufficiently complex to merit its own separate pass in the
compiler. This would separate the semantic analysis involved in checking and inferring
type information from the process of generating LLL. The current integration of those
concerns makes understanding either process more difficult and, possibly, more error-
prone. (It may also be hiding opportunities for factoring out common type checking
routines.)

A type-checking pass in the compiler would typically annotate AST nodes with type
information. This is especially useful for expressions and built-in functions, where type
information is inferred from the types of operands and arguments. Once the AST has been
annotated with type information, the LLL generation pass is greatly simplified. This makes
both type checking and LLL generation easier to evaluate/audit.

As an aside, it's possible that separating type checking into its own compiler pass might
allow the language/compiler’s treatment of typing integer literals to change to be more
context-dependent. That is, perhaps the language/compiler could treat an integer literal to
be whatever type makes the most sense based on how it used rather than based on the
literal itself. For instance, 7 could just as easily bean int128 asa uint256 , and that
choice could be deferred until type checking.

6 Intermediate Representation (LLL)

The Vyper compiler adapts the LLL intermediate representation for its use. The LLL does
not appear to have a specification, which places an extraordinary burden on anybody trying

to understand the IR generation phase.

Similarly, without a precise LLL spegc, it is impossible to audit the LLL—bytecode pass of
the compiler.

7 Needed Specifications

Before a full security audit of the Vyper compiler is performed, detailed specifications
should be written.

7.1 Language Specification

The Vyper language lacks a complete, precise specification, which makes it impossible to
know if the implementation conforms to the desired behavior. A language for implementing
smart contracts must be well-specified so that programmers can be confident that they
know what their smart contracts will actually do.

A specification for Vyper must include a complete description of the syntax, the semantics,
the types, the statements, the operations, etc., of the language. Those descriptions must
be sufficiently detailed that a conforming compiler could be written from the specification
alone, without needing to consult the implementation of the reference compiler. (It is
impossible to check a compiler’s correctness if the definition of the language is based on
that compiler's implementation and no specification.)

One test of the completeness of a language specification is to go through the compiler and
determine if every action it takes can be traced back to something in the specification. If
not, then either the specification is incomplete, or the compiler is doing something it
shouldn't.

7.2 Interface Specifications

To independently examine the phases of a compiler, it is necessary to understand their
interfaces precisely. In the Vyper compiler, this means that the AST definition, the type
system’s classes, and the LLL require thorough documentation. For each class
representing those interfaces, each field must include a specification that indicates (1) the
type of that field, (2) whether the field can be null, and (3) any non-type-based restrictions
on the values that the field might hold. Extra credit for any invariants that can be added.

8 Bytecode Verification

Well-formed bytecode has properties than can be checked statically in much the same way
that statically-typed programs can be checked for type correctness. For example, at any
given instruction in a well-formed EVM program, the evaluation stack should have exactly
the same height no matter what dynamic execution path was followed to reach that
instruction. If the code generated by the compiler does not have this property, then
something is almost certainly amiss.

Java popularized the requirement that bytecode be automatically verified before it would
be trusted for execution. Java's bytecode verifier tested not only the stack height property
described above, but it also tracked the types of values on the stack and made sure that (1)
the types on the stack were consistent independent of dynamic execution path, and (2)
that the types were not used incorrectly. For example, the verifier would prove statically
that no execution path would add two object references together, or assign an integer
value to a location that expected an object reference. For more details, see
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.10

While the EVM does not require that bytecode pass any static verification tests, such a tool
would be invaluable to building confidence that the Vyper compiler was emitting
reasonable bytecode. While it may not make sense to go all the way to implementing a tool
that can check type safety, it would be good to have confidence that the stack heights are
behaving consistently.

8.1 “Valency” in the code generator

The AST—LLL and LLL—EVM passes do some subtle/complex operations to make sure
that the stack heights do not get out of sync—a property that a verifier could check.

We believe that some of the complexity is unnecessary because it seems to stem from the
use of if inLLL to both translate statements (that should leave the stack empty), and
expressions (that should add value(s) to the stack). This gets complicated by the fact that
notall if shavean else , which means special care should be taken when the if isan
expression. We would recommend introducing an if-expr operator to LLL and then
asserting that all if s leave the stack empty (on both paths), and that all if-expr have
botha then and else part, and that both add the same number of values to the stack.

9 Auditable Code

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.10

Just as the compiler could benefit from being decomposed into a number of compiler
phases, the code itself could benefit from refactoring. Small functions with well-defined
interfaces can be analyzed independently.

9.1 Refactor Long Functions

Long functions are hard to read and often indicate that a function is doing several things at

once. For example, arithmetic() in parser/expr.py isover 250 lines of code. This

function could be broken up into multiple functions, each handling a single binary

operation. There are many such examples in the code, particularly in parser/expr.py and
parser/stmt.py .

9.2 Use Static Typing

Most of the Vyper compiler is lacking type annotations or has incorrect annotations. For
example, dict_to_ast() seems to have an incorrect type annotation. The parameter is
annotated with the type dict , but the body of the function is clearly meant to handle
multiple different types:

def dict_to_ast(ast_struct: dict) -> vyper_ast.VyperNode:
if isinstance(ast_struct, dict) and 'ast_type' in ast_struct:

elif isinstance(ast_struct, list):
elif ast_struct is None or isinstance(ast_struct, (str, int)):

else:

We recommend using type annotations everywhere. Not only will this aid readability
considerably, but it will likely catch bugs that could otherwise only be found with
comprehensive testing.

9.3 Avoid Code Repetition

Code repetition increases the burden on an auditor or other code reader. They must
examine similar code multiple times instead of reading a reusable function a single time.

Code repetition also increases the chance of introducing subtle bugs. As an example,

concat() in functions/functions.py and list_literals() in parser/expr.py both
check that a series of values have the same type. They do this in subtly different ways, and
the versionin list_literals() has abug (included at the end of this report).

Other examples of code repetition are type checking and “clamping” integer values to an
allowed range. Similar variants of these are spread throughout the codebase.

10 Issues

Below is a list of issues discovered during the security review. It is by no means
comprehensive, as finding bugs was not the primary goal of the review.

10.1 if / else stack height mismatch honeypot

This issue is the same as https://github.com/ethereum/vyper/issues/1511 but shows how
it can be used for nefarious purposes.

It appears in the below code that someone can call the default function with enough to get
over the 1 ether threshold and then call the default function multiple times with no ether to
drain the contract. (withdraw() fails to clear the account’s balance and can thus be called
repeatedly.)

However, it's impossible to reach the withdraw() function because whenthe if branch
is not taken in __default__() , a stack underflow occurs, and the transaction is reverted.

The contract owner can retrieve all the locked funds after the one-week expiration has
elapsed.

owner: public(address)
balances: public(map(address, uint256(wei)))
expiration: public(timestamp)

@public
def __init__():
self.owner = msg.sender
self.expiration = block.timestamp + (60 * 60 * 24 * 7)

@public

https://github.com/ethereum/vyper/issues/1511

@payable
def __default__():
if msg.value > 0:
assert msg.value >= as_wei_value(1, "ether")
self.deposit(msg.sender, msg.value)

if msg.value ==
self.withdraw(msg.sender)

@ublic
def kill():
assert block.timestamp > self.expiration

selfdestruct(self.owner)

@private
def deposit(account: address, amount: uint256(wei)) -> uint256(wei):
self.balances[account] += amount

return self.balances[account]

@rivate
def withdraw(account: address):
send(account, self.balances[account])

10.2 if / else branches with different resulting stack height can
lead to stack manipulation

This is related to https://github.com/ethereum/vyper/issues/1511 but explores the more
general problem:

@rivate
@constant
def foo() -> uint256:

return 42

@private

@constant

def echo(a: uint256) -> uint256:
if False:

https://github.com/ethereum/vyper/issues/1511

self.foo()

return a

@public
@constant
def test() -> uint256:
a: uint256 = 123
if False:
pass
else:
self.foo()
self.echo(987)
return a # BUG: returns 384

10.3 uint256 exponentiation can overflow without error as long as
the result is greater than the base

@public
@constant
def test(x: uint256, y: uint256) -> uint256:
return x*xxy # BUG: test(10, 78) returns 736632861014704366114321199304967.

This issue is due to the following code:

code/vyper/parser/expr.py:L646-L658

if ltyp == rtyp == 'uint256':
o = LLLnode.from_list([
'seq’',
[
‘assert',
[
‘or',

['or', ['eq', right, 1], ['iszero', right]l],
['1t', left, ['exp', left, right]]
1,
1,

['exp', left, right],
1, typ=BaseType('uint256'), pos=getpos(self.expr))

10.4 int128 exponentiation can overflow without error

@public

@constant

def test(x: int128, y: int128) -> int128:
return x*xy # BUG: test(2, 256) returns 0

The relevant compiler code is here:

code/vyper/parser/expr.py:L659-L667

elif ltyp == rtyp == 'int128"':
new_unit = left.typ.unit
if left.typ.unit and not isinstance(self.expr.right, ast.Name):
new_unit = {left.typ.unit.copy().popitem()[O]: self.expr.right.n}
o = LLLnode.from_list(
['exp', left, right],
typ=BaseType('int128"', new_unit),
pos=getpos(self.expr),

10.5 Struct literals are dependent on key order

Note that the same values for a and b are set in both test functions, just in a different
order:

struct Foo:
a: uint256
b: uint256

@ublic
@constant
def test() -> uint256:

foo: Foo = Foo({a: 1, b: 2})

return foo.a # returns 1

@public

@constant

def test2() -> uint256:
foo: Foo = Foo({b: 2, a: 1})
return foo.a # BUG: returns 2

This issue is due to the following code, which is dependent on the order keys are returned:

code/vyper/parser/expr.py:L1107-L1111

return LLLnode.from_list(
["multi"] + [o[key] for key in (list(o.keys()))],
typ=StructType(members, name, is_literal=True),

pos=getpos(expr),

Note that the behavior may differ depending on what version of Python is used to run the
compiler.

10.6 Private functions can't have duplicate function selectors

This is an unnecessary constraint. Label names can be made unique.

@rivate
@constant
def gfah(): pass

@private
@constant

def eexo(): pass

error: Label with name priv_236395036 already exists!

10.7 Event packing leaks a variable into the current context

Foo: event({a: bytes[25]1})

@ublic
@constant
def test() -> stringl[7]:
log.Foo("testing")
return _log_pack_var_6_12 # returns "testing"

10.8 Inappropriate overflow check for addmod and mulmod

addmod and mulmod should allow arbitrary uint256 operands, but the following code
performs a check for addition or multiplication overflow:

code/vyper/functions/functions.py:L1023-L1052

@signature('uint256', 'uint256', 'uint256')
def uint256_addmod(expr, args, kwargs, context):
return LLLnode.from_list(

[
'seq’,
['assert', args[2]],
['assert', ['or', ['iszero', args[1]], ['gt', ['add',6 args[0], arg
['addmod', args[@], args[1], args[2]],
1,

typ=BaseType('uint256"'),
pos=getpos(expr),

@signature('uint256', 'uint256', 'uint256')
def uint256_mulmod(expr, args, kwargs, context):
return LLLnode.from_list(
[
'seq’',
['assert', args[2]],
['assert', [

or',

['iszero', args[0]],

['eq', ['div', ['mul', args[0@], args[1]1], args[0]], args[1]],
11,
['mulmod', args[@], args[1], args[2]],

15
typ=BaseType('uint256"'),
pos=getpos(expr),

This results to the following runtime errors:

@public
@constant
def testl(a: uint256, b: uint256) -> uint256:
return uint256_addmod(a, b, 12) # test(2x*255, 2**255) reverts

@public
@constant
def test2(a: uint256, b: uint256) -> uint256:
return uint256_mulmod(a, b, 12) # test(2**x255, 2) reverts

10.9 Min and max can incorrectly use signed comparisons depending
on argument order

@public
@constant
def test1() -> uint256:
return min(@, 2**255) # returns 2x*255

@public
@constant
def test2() -> uint256:
return min(2**255, @) # returns 0

This is due to the following code:

code/vyper/functions/functions.py:L1174-L1177

if left.typ.typ == 'uint256':
gt'

comparator = ' if is_min else 'lt'

else:

comparator = 'sgt' if is_min else 'slt'
10.10 Possible simplification for list return type checking

It seems that the following check:

code/vyper/parser/stmt.py:L869-L877

re.split(r'\(|\[', str(sub.typ.subtype))[0]
ret_base_type = re.split(r'\(|\[', str(self.context.return_type.subtype))[0]
loop_memory_position = self.context.new_placeholder(typ=BaseType('uint256'))

sub_base_type

if sub_base_type != ret_base_type:
raise TypeMismatchException(
f"List return type {sub_base_type} does not match specified "
f"return type, expecting {ret_base_type}",
self.stmt

can simply be:

if sub.typ.subtype != self.context.return_type.subtype:
raise TypeMismatchException(
f"List return type {sub.typ.subtype} does not match specified "
f'"return type, expecting {self.context.return_type.subtype}",
self.stmt

10.11 List literals can have mismatched types due to an off-by-one
error

This check should use > @ insteadof > 1 :

code/vyper/parser/expr.py:L1066-L1067

if len(o) > 1 and previous_type != current_type:
raise TypeMismatchException("Lists may only contain one type", self.expr)

The result is inconsistent type checking for list literals:

@ublic

def test():
X: uint256[3]
y: uint256[3]

[2%%255, 1, 3] # Compiles without error
[1, 2x*x255, 3] # Error: Lists may only contain one type

10.12 Modulo at compile time differs from modulo at runtime

At compile time, constant expressions are computed using Python's built-in modulo
operator. It handles negative numbers differently from the EVM:

@public
@constant
def foo() -> int128:

return -5%2 # returns 1

@public
@constant
def bar(n: int128) -> int128:

return n%2 # bar(-5) returns -1

10.13 Negative constants can be used in some places where
uint256 is required

The following code casts int128 literalsto uint256 without any check on the value:

code/vyper/parser/parser_utils.py:L415-L417

Integer literal conversion.
elif (frm.typ, to.typ, frm.is_literal) == ('int128', 'uint256', True):
return LLLnode(orig.value, orig.args, typ=to, add_gas_estimate=orig.add_g:

This permits the following (invalid) code to compile without error:

Test: event({ n: uint256 })
x: map(uint256, uint256)

@ublic

def test():
a: uint256 = self.x[-7]
log.Test(-7)

10.14 Private function calls with arguments needlessly store a
function selector in memory

The following Vyper code:

@rivate
@constant
def bar(a: uint256):

pass

@ublic
def foo():
self.bar(1)

produces the following IR:

/* Internal Call: bar */

[pop,
[seq_unchecked,
[seq, [mstore, 320, 69443890], [mstore, 352, 1]],

Note that 69443890 == 0x423a132 == bytes4(keccak256("bar(uint256)")) .

Storing this in memory doesn’t seem to have any purpose.

10.15 Runtime error when making an external call to the same
contract

This code makes it an error to make an external call to the same contract:

code/vyper/parser/external_call.py:L75

['assert', ['ne', 'address',6 contract_address]l],

This is a surprising limitation. It doesnt seem to have a clear benefit, and it could be
problematic. As an example, multisig wallets often use self-calls to perform administrative
functions. This way the wallet owners have to agree to make a change like lowering the
required threshold of signatures. In Vyper, this would produce a runtime error.

10.16 ZERO_WEI constant can be defined with no effect

ZERO_WEI is a built-in constant, so it shouldn’t be allowed as a user-defined constant:

ZERO_WEI: constant(uint256(wei)) = 3
ONE_WEI: constant(uint256(wei)) = 5

@public
@constant
def zero() -> uint256(wei):
return ZERO_WEI # returns 9, not 3

@ublic
@constant
def one() -> uint256(wei):
return ONE_WEI # returns 5, as expected

10.17 Decimals can't be the base for exponentiation

This might be an intentional restriction, but the error messages are confusing:

@public
def test(x: decimal) -> decimal:

return x**convert(2, decimal) # Error: Only whole number exponents are suj

return x**2 # Error: Cannot implicitly convert decimal to int128.

10.18 Array types are not hashed for event topics

Solidity hashes all array types, including bytes and string s, when they're used as
indexed parameters (event topics).

Vyper only accepts bytes and string s with a maximum length of 32. They're then
converted to bytes32 . This could be an interoperability problem. Vyper doesn't appear to
accept other array types as indexed event parameters at all.

10.19 Incorrect error message when converting a long bytes array
The following code results in the error message Cannot convert bytes array of max

length 320 to uint256 :

@ublic
@constant
def test(b: bytes[34]) -> uint256:

return convert(b, uint256)

This is a typo in the error message here:

code/vyper/types/convert.py:L229
f"Cannot convert bytes array of max length {in_arg.value} to uint256",

The error should use in_arg.typ.max_len instead. Note that this same mistake occurs
multiple places in the code.

10.20 Code that ends in a comment (with no newline) cannot be
compiled

This was previously reported for Vyper, but it's actually a Python bug:

https://github.com/ethereum/vyper/issues/1161
https://bugs.python.org/issue35107

@public
def __init__(Q):

pass

BUG (no newline)

10.21 Struct getter collisions

Due to the way getter names are generated for struct fields, collisions can happen:

struct Test:
foo: uint256
__foo: uint256

a: public(Test)
a__: public(Test)

The error message is Duplicate function name: a____foo . This is better than an

ambiguity, but perhaps the collision should be avoided altogether by using a separator that
cannot appear in identifiers.

The following code is responsible for this naming:

code/vyper/parser/global_context.py:L230-L240

Struct type: for each member variable, make a separate getter, extend
its function name with the name of the variable, do not add input
arguments, add a member access to the return statement
elif isinstance(typ, StructType):
o=1[]
for k, v in typ.members.items():
for funname, head, tail, base in cls._mk_getter_helper(v, depth):
o.append(("__" + k + funname, head, "." + k + tail, base))
return o
else:

raise Exception("Unexpected type")

10.22 Relative imports are broken beyond one parent level

The following code produces paths like/something.vy instead of
../../../something.vy :

code/vyper/signatures/interface.py:L225-L226

if level:
base_path = f"{'."'xlevel}/{module.replace('."',"'/"')}"
A pathlike/something.vy is actually valid, so this can end up importing code from a

surprising place. The expected behavior is undocumented, so perhaps the intention was
just to disallow more than two leading dots.

10.23 Exponentiation of a type with units works differently for
uint256 and int128

When the underlying type is uint256 , all units are stripped away. When the underlying
typeis int128 ,the units remain but with an incorrect exponent (mx*3 rather than mxx6
below):

units: {
m: "meter"

@public
@constant
def test() -> int128(m**3):
a: int128(m**2) = 5
return a**3 # BUG: Type int128(m**3) instead of int128(m**6)

@ublic
@constant
def test2() -> uint256:
a: uint256(m*%x2) = 5
return a**2 # BUG: Type uint256 instead of uint256(m**4)

https://vyper.readthedocs.io/en/latest/structure-of-a-contract.html#imports-via-import

10.24 Negation (“unary subtraction”) can underflow

There is no check for underflow when negating:

@constant
@public
def bar(x: uint256) -> uint256:

return -x # BUG: returns 2**256 - x

Using @ - x instead reverts as expected.
The issue is here, where no check is done for underflow:

code/vyper/parser/expr.py:L969-L985

elif isinstance(self.expr.op, ast.USub):
if not is_numeric_type(operand.typ):
raise TypeMismatchException(
f"Unsupported type for negation: {operand.typ}",
operand,

if operand.typ.is_literal and 'int' in operand.typ.typ:
num = ast.Num(n=0 - operand.value)
num.source_code = self.expr.source_code
num.lineno = self.expr.lineno
num.col_offset = self.expr.col_offset
num.end_lineno = self.expr.end_lineno
num.end_col_offset = self.expr.end_col_offset
return Expr.parse_value_expr(num, self.context)

return LLLnode.from_list(["sub", @, operand], typ=operand.typ, pos=getposi

10.25 Type confusion with timestamp negation

Subtracting two timestamps yields a timedelta ,but -x where x isatimestamp is still

a timestamp :

@public
def test(x: timestamp) -> timestamp:

return —-x

Note that this negation probably shouldn't be allowed at all, given that timestamp is an
unsigned value, so perhaps this issue will go away when that is fixed.

10.26 Array being iterated over can be modified in another function

Modifying the array directly in the loop body is disallowed, so this could be considered a
bug:

X: uint256[1]

@private
def store_in_x(index: uint256, value: uint256):

self.x[index] = value

@ublic
def foo():
for n in self.x:
self.x[0] = n * 2 # blocked with "Altering list 'self.x' which is bt
self.store_in_x(@, n * 2) # BUG: allowed

10.27 Infinite loop via modifying loop index

The generated variable _index_for_* shouldnt be accessible. The following generates
an infinite loop:

@ublic
def infinite_loop():
for n in [1,2,3]:
_index_for_n = @ # BUG

10.28 Can't loop over a nested array

for loops in Vyper can loop over arrays, but not if they're nested. This code fails to
compile with the surprising error 'Subscript' object has no attribute 'func' :

@public

def __init__():
x: uint256[5][2] = [[eo, 1, 2, 3, 41, [2, 4, 6, 8, 10]]
for i in x[1]:

pass

10.29 State variables can be named public and constant

These should be treated as reserved words.

public: uint256 # BUG
constant: uint256 # BUG

@public
def __init__():
self.public = 5

10.30 else allowed on for loop silently ignored

The following code compiles, but the else isignored. (No code is generated for it.)

Xx: public(uint256)

@public
def __init__Q):
for i in range(10):
self.x += 1

else:
self.x = 123

10.31 Circumventing @constant with multiple return values and tuple
assignment

Modifying state is not allowed in @constant functions, but you can bypass the check by
using multiple return values:

Xx: public(uint256)

@private
@constant
def returnTwo() -> (uint256, uint256):

return 1, 2

@public
@constant
def foo():
a: uint256 = 0@
a, self.x = self.returnTwo() # BUG

Appendix 1 - Disclosure

ConsenSys Diligence (“CD") typically receives compensation from one or more clients (the
“Clients”) for performing the analysis contained in these reports (the “Reports”). The
Reports may be distributed through other means, including via ConsenSys publications
and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and
the Reports do not guarantee the security of any particular project. This Report does not
consider, and should not be interpreted as considering or having any bearing on, the
potential economics of a token, token sale or any other product, service or other asset.
Cryptographic tokens are emergent technologies and carry with them high levels of
technical risk and uncertainty. No Report provides any warranty or representation to any
Third-Party in any respect, including regarding the bugfree nature of code, the business
model or proprietors of any such business model, and the legal compliance of any such
business. No third party should rely on the Reports in any way, including for the purpose of
making any decisions to buy or sell any token, product, service or other asset. Specifically,
for the avoidance of doubt, this Report does not constitute investment advice, is not
intended to be relied upon as investment advice, is not an endorsement of this project or
team, and it is not a guarantee as to the absolute security of the project. CD owes no duty
to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely
for Clients and published with their consent. The scope of our review is limited to a review
of Solidity code and only the Solidity code we note as being within the scope of our review
within this report. The Solidity language itself remains under development and is subject to
unknown risks and flaws. The review does not extend to the compiler layer, or any other
areas beyond Solidity that could present security risks. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) — on
its website. CD hopes that by making these analyses publicly available, it can help the
blockchain ecosystem develop technical best practices in this rapidly evolving area of
innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other
computer links, gain access to web sites operated by persons other than ConsenSys and
CD. Such hyperlinks are provided for your reference and convenience only, and are the
exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are
not responsible for the content or operation of such Web sites, and that ConsenSys and CD
shall have no liability to you or any other person or entity for the use of third party Web
sites. Except as described below, a hyperlink from this web Site to another web site does
not imply or mean that ConsenSys and CD endorses the content on that Web site or the
operator or operations of that site. You are solely responsible for determining the extent to
which you may use any content at any other web sites to which you link from the Reports.
ConsenSys and CD assumes no responsibility for the use of third party software on the
Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date
appearing on the Report and is subject to change without notice. Unless indicated
otherwise, by ConsenSys and CD.

